
Deployed Large-Scale Graph Analytics:   
Use Cases, Target Audiences, and Knowledge 

Discovery Toolbox (KDT) Technology 

Aydin Buluc, LBL (abuluc@lbl.gov) 

John Gilbert, Adam Lugowski and Drew Waranis, UCSB ({gilbert,alugowski,awaranis}@cs.ucsb.edu) 

David Alber and Steve Reinhardt, Microsoft ({david.alber,steve.reinhardt}@microsoft.com) 
 
 



Knowledge Discovery Toolbox enables rapid 
algorithm development and fast execution 

for large-scale complex graph analytics 
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Agenda 

• Use cases and audiences for graph analytics 

• Technology 

• Next steps 



Graph Analytics 

• Graphs arise from 
– Social networks (human or animal) 

– Transaction networks (e.g., Internet, banking) 

– Molecular biological interactions (e.g., protein-protein interactions) 

• Many queries are 
– Ranking 

– Clustering 

– Matching / Aligning 

• Graphs are not all the same 
– Directed simple graphs, hypergraphs, bipartite graphs, with or without 

attributes on edges or vertices, … 



Use Case:  Find Influential People in a Social Network 

Warfighters 



Use Case:  Find Influential People in a Social Network 

• Warfighter wants to 
understand a social 
network (e.g., village, 
terrorist group);  see 
DARPA GUARDDOG 

• Specifically, wants to 
identify leaders / 
influencers 

• GUI selects data, calls KDT 
to identify top N 
influencers 

Warfighters 



Use Cases 

• Homeland security / Understand roles of members of terrorist 
groups based on known links between them / “Looking just at 
cell-phone communications, who are the leaders?” 

• International banking / Detect money laundering / “Find 
instances of money being transferred at least 5 times and 
coming back to its source.” 

 

Common thread:  Enabling the knowledge-discovery domain 
expert to analyze graphs directly gets to the “right” answer 
faster and possibly at all.  (In the embedded context, the end-
user and the KD domain expert are likely different people.) 

 

 



Audiences 

• End-users / warfighters 
– True end-user GUI not addressed by KDT 

• Knowledge discovery domain experts 
– Are experts in something other than graph analytics 
– Have large graphs they need to explore as part of their work 
– Want simple, robust, scalable, flexible package 

• Graph-analytic researchers 
– Are experts in graph analytics, machine learning, etc. 
– Want to experiment with new algorithms … 
– And get feedback from users on efficacy on large data 

• Efficiency-level developers 
– Call-backs in C++ currently have big performance advantage 
– Formatting data for ingest 

 

 
 



Agenda 

• Use cases and audiences for graph analytics 

• Technology 

• Next steps 



Local v. Global Metrics 
Degree Centrality v. Betweenness Centrality 

A 
B 

• Is vertex A or B most central? 
– A has directed edges to more vertices (degree centrality) 

– B is on more shortest paths between vertex pairs (betweenness centrality) 
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Knowledge Discovery Toolbox (KDT) 
 Overview 

• Target audiences 
– Primarily, (non-graph-expert) domain experts needing to analyze large graphs 

– Secondarily, graph-algorithm researchers and developers needing access to highly 
performant scalable graph infrastructure 

• Target use cases 
– Broadly, problems needing  the detail of algorithms that traverse the graph extensively 

– Social-network-based ranking and search 

– Homeland security 

• Current KDT practicalities 
– Abstractions are (semantic) directed graph and sparse and dense vectors, all of which 

are distributed across a cluster 

– Python interface layered on Combinatorial BLAS 
• Delivers full scaling of CombBLAS with negligible Python overhead for non-semantic graphs 

– v0.2 release expected in October 
• x86-64 clusters running Windows or Linux 

– Open-source code available at kdt.sourceforge.net under New BSD license 

 



Parsimony with New Concepts 
for Domain Experts 

• (Semantic) directed graphs 
– constructors, I/O 
– basic graph metrics (e.g., degree()) 

– vectors 

• Clustering: Markov, and components 

• Ranking:  betweenness  
       centrality, PageRank 

• Matching:  k-cycles  

 
 
 

• Hypergraphs and sparse matrices 

• Graph primitives (e.g., bfsTree()) 

• SpMV / SpGEMM on semirings 
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• Hypergraphs and sparse matrices 

• Graph primitives (e.g., bfsTree()) 

• SpMV / SpGEMM on semirings 

# bigG contains the input graph 
comp = bigG.connComp() 
giantComp = comp.hist().argmax() 
G = bigG.subgraph(comp==giantComp) 
 
clus = G.cluster(‘Markov’) 
 
clusNedge = G.nedge(clus) 
 
smallG = G.contract(clus) 
 
# visualize 
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 […] 
L = G.toSpParMat() 
d = L.sum(kdt.SpParMat.Column) 
L = -L 
L.setDiag(d)  
M = kdt.SpParMat.eye(G.nvert()) – mu*L 
pos = kdt.ParVec.rand(G.nvert()) 
for i in range(nsteps): 
    pos = M.SpMV(pos) 

 



Graph API (v0.2) 

Ranking 
exact and approx BC,  

PageRank 

Community  
Detection 

Network  
Vulnerability Analysis 

Applications 

DiGraph 
bfsTree, isBfsTree  

plus utility (e.g., DiGraph,nvert, 
toParVec,degree,load,UFget,+,*, 

sum,subgraph,reverseEdges) 
64-bit and single-bit elements   

Algorithms and primitives 

Graph500 

(Sp)Vec 
(e.g., +,*,|,&,>,==,[], 
abs,max,sum,range, 

norm, hist,randPerm,  
scale, topK) 

Graph-problems 

Clustering 
Markov, connected 

components 

SpMat 
(e.g., +,*, SpMV, 

SpGEMM,  
SpMV_SemiRing, 

 

HyGraph 
bfsTree, isBfsTree 

plus utility (e.g.,  
HyGraph,nvert, 

toParVec,degree, 
load,UFget) 

SpMV_SemiRing 
SpMM_SemiRing 

CombBLAS 

Separation of  
interfaces 

Matching 
<None> 

semantic 
support 

(filters,  
objects) 



Semantic Graph Use Case 
“Looking just at cell-phone communications, who are the leaders?” 

import kdt 

# user function that converts a (file) record into an edge 

def readRecord(self, sourceV, destV, record): 

 sourceV = record[0] 

 destV = record[1] 

 self.category = record[2] 

 self.type = record[3] 

 return (sourceVert, destVert, self) 

G = kdt.DiGraph.load(‘/file/my/graph/data’, readRecord) 
 

# edges for which the edge-filter returns True will 
#   be used in the calculation 

edgeFilter = lambda x:  x.category == CellPhone 

G.addEFilter(edgeFilter) 
 
# calculate leaders via approximate betweenness centrality 

bc = G.centrality(‘approxBC’) 

leaders = bc.topK(10)    

 
Caveat:  Currently, expressing the filter in Python (rather than C++) leads to a 
big performance decrease; reducing/eliminating this decrease is work in progress. 
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The Case for Sparse Matrices 

Many irregular applications contain  
coarse-grained parallelism that can be exploited  

by abstractions at the proper level. 

Traditional graph 
computations 

Graphs in the language of 
linear algebra 

Data driven, 
unpredictable communication. 

Fixed communication patterns 

Irregular and unstructured,  
poor locality of reference 

Operations on matrix blocks exploit 
memory hierarchy 

Fine grained data accesses, 
dominated by latency 

Coarse grained parallelism, 
bandwidth limited 

The case for sparse matrices 



Performance 
Graph500 in KDT or Combinatorial BLAS 

• Graph500 benchmark on 8B edges, C++ or KDT calling 
CombBLAS 

• NERSC “Hopper” machine (Cray XE6) 
• [Buluç & Madduri]:  New hybrid of CombBLAS MPI + 

OpenMP gets 25 GTEPS on 2T edges (scale 37) on 
43,200 cores of Hopper 
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Performance 
 Betweenness Centrality 

• With a few hundred cores, can do even a complex graph analysis in 
near-interactive time 

• 2M edges, approximate betweenness centrality sampling at 3% 
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Productivity 

• Betweenness centrality   
– Python version initially written to SciPy interfaces 

– Porting to KDT took 11 hours for working, scalable implementation 

• Markov clustering 
– Written by an undergraduate in 6 hours 



Agenda 

• Use cases and audience 

• Technology 

• Next steps 



Next Steps 

• Core technology 
– Evolve semantic graph support so fully usable 

– Implement support for streaming graphs 

• Engineering 
– Couple with GUI / graph viz package 

– Port to Windows Azure 

– Accept more data formats 

– Extend coverage of clustering, ranking, and matching algorithms 



KDT Summary 

• Open-source toolbox targeted at domain experts 

• Scalable to 10B-edge graphs and thousands of cores 

• Limited set of methods, no graph viz yet 

• kdt.sourceforge.net for details 

• If you  

          - have other use cases  
          - need specific data formats or methods  
          - have developed a method 
     please contact me at 



Knowledge Discovery Toolbox enables rapid 
algorithm development and fast execution 

for large-scale complex graph analytics 



Backup 



Further Info 

• Linked, by Albert-Laszlo Barabasi  

• Graph Algorithms in the Language of Linear Algebra, by John 
Gilbert and Jeremy Kepner, SIAM 



KDT Data 
filtering viz 

Cloud Benefits for Graph Analytics 

 



KDT Data 
filtering viz 

Cloud Benefits for Graph Analytics 

• For domain expert 
– Elasticity of compute 

resource 

– Ready availability of needed 
data – what? 

– Ready availability of new 
methods – which? 

• For graph-algorithm 
researcher 
– Quickly try your algorithm 

on big data 

– Quickly make it visible to 
domain experts 

Elastic 
compute 

and 
memory 

Needed 
big data 

Needed 
methods 



“Transport of the mails, transport of the 
human voice, transport of flickering pictures -

- in this century, as in others, our highest 
accomplishments still have the single aim of 

bringing men together.”  
Antoine de Saint-Exupery 



Undelivered Possibilities 

• Graph viz 

• More ranking/clustering/matching options 

• Availability in Azure 

• Initial stages on disk, later stages in memory 

• Dynamic/streaming graphs 



Use Case:  Find Influential People in a Social Network 

MyGroup 

Promoter 

• Promoter has a SN group 

• Wants to identify 
influencers on which to 
focus marketing efforts so 
as to maximize viral effect 
of the group 

• Calls KDT with group 
name, gets back top N 
influencers 

• Useful for (e.g.) viral 
marketing, public health 

 

 



Comparison to Other Parallel Packages 

Package        Target users          Interface  Supported memory* 
Graph-alg  

devs 
Domain  
experts 

Pegasus X Hadoop Distributed on-disk 

Pregel X C++ Distributed on-disk 

PBGL X C++ Distributed in-memory 

MTGL X C++ Shared 

SNAP (GA Tech) X C Shared 

SNAP (Stanford) X X C++ / NodeXL Shared 

GraphLab X C++ Shared 

CombBLAS X C++ 
 

Shared or distributed,  
in-memory 

KDT X X Python Shared or distributed, 
in-memory 

*“Shared” meaning either cache-coherent or Cray XMT-style 
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Many Graphs Don’t Decompose Simply onto 
Distributed Memory 

• 4n exchanges 
• n^2 FLOPS 
• Good locality 

• 4n exchanges 
• n^2 FLOPS 
• Good locality 

• ? exchanges 
• ? OPS 
• Usually poor locality, 

hence frequent comms, 
hence often a poor 
match for MapReduce 



Identification of Primitives 

Sparse matrix-matrix  
multiplication (SpGEMM) 

 
 

 
 
Element-wise operations 

          

× 

Matrices on various semirings:    (x, +)   ,   (and, or)   ,   (+, min)   ,   … 

Sparse matrix-dense 
vector multiplication 
 
 
 
 
Sparse matrix indexing 
          

× 

.* 

  Sparse array-based primitives 



Some Combinatorial BLAS functions 



bfsTree Implementation in KDT, for DiGraphs 
(Kernel 2 of Graph500) 

def bfsTree(self, root, sym=False): 

    if not sym: 

        self.T()     # synonym for reverseEdges 

    parents = dg.ParVec(self.nvert(), -1) 

    fringe = dg.SpParVec(self.nvert()) 

    parents[root] = root 

    fringe[root] = root 

    while fringe.nnn() > 0: 

        fringe.spRange() 

        self._spm.SpMV_SelMax_inplace(fringe._spv) 
        pcb.EWiseMult_inplacefirst(fringe._spv, 

            parents._dpv, True, -1) 

        parents[fringe] = fringe 

    if not sym: 

        self.T() 

    return parents 

• SpMV and EWiseMult 
are CombBLAS ops that 
do not yet have good 
graph abstractions 

– pathsHop is an attempt for 
one flavor of SpMV 

Technically 

Ecologically 



pageRank Implementation in KDT (p. 1 of 2) 
 def pageRank(self, epsilon = 0.1, dampingFactor = 0.85): 

        # We don't want to modify the user's graph. 
        G = self.copy() 
        nvert = G.nvert() 
 
        G._spm.removeSelfLoops() 
 
        # Handle sink nodes (nodes with no outgoing edges) by 
        # connecting them to all other nodes. 
        degout = G.degree(gr.Out) 
        nonSinkNodes = degout.findInds() 
        nSinkNodes = nvert - len(nonSinkNodes) 
        iInd = ParVec(nSinkNodes*(nvert)) 
        jInd = ParVec(nSinkNodes*(nvert)) 
        wInd = ParVec(nSinkNodes*(nvert), 1) 
        sinkSuppInd = 0 
 
        for ind in range(nvert): 
            if degout[ind] == 0: 
                # Connect to all nodes. 
                for sInd in range(nvert): 
                    iInd[sinkSuppInd] = sInd 
                    jInd[sinkSuppInd] = ind 
                    sinkSuppInd = sinkSuppInd + 1 
        sinkMat = pcb.pySpParMat(nvert, nvert,  
                       iInd._dpv, jInd._dpv,    wInd._dpv) 
        sinkG = DiGraph() 
        sinkG._spm = sinkMat 

• This portion 
looks more like 
graph operations 

Technically 

Ecologically 



pageRank Implementation in KDT (p. 2 of 2) 
(main loop) 

    G.normalizeEdgeWeights() 
    sinkG.normalizeEdgeWeights() 
 
    # PageRank loop 
    delta = 1 
    dv1 = ParVec(nvert, 1./nvert) 
    v1 = dv1.toSpParVec() 
    prevV = SpParVec(nvert) 
    dampingVec = SpParVec.ones(nvert) *  
                     ((1 - dampingFactor)/nvert) 
    while delta > epsilon: 
        prevV = v1.copy() 
        v2 = G._spm.SpMV_PlusTimes(v1._spv) + \ 
                 sinkG._spm.SpMV_PlusTimes(v1._spv) 
        v1._spv = v2 
        v1 = v1*dampingFactor + dampingVec 
        delta = (v1 - prevV)._spv.Reduce(pcb.plus(),  
                    pcb.abs()) 
    return v1 

• This portion looks 
much more like 
matrix algebra 

Technically 

Ecologically 



Graph500 Implementation in KDT (p. 1 of 2) 
 scale = 15 

nstarts = 640 
 
GRAPH500 = 1 
if GRAPH500 == 1: 
        G = dg.DiGraph() 
        K1elapsed = G.genGraph500Edges(scale) 
 
        if nstarts > G.nvert(): 
                nstarts = G.nvert() 
        deg3verts = (G.degree() > 2).findInds() 
        deg3verts.randPerm() 
        starts = deg3verts[dg.ParVec.range(nstarts)] 
 
G.toBool() 
 
K2elapsed = 1e-12 
K2edges = 0 
for start in starts: 
        start = int(start) 
        if start==0:    #HACK:  avoid root==0 bugs for now 
                continue 
        before = time.time() 
        parents = G.bfsTree(start, sym=True) 
        K2elapsed += time.time() - before 
        if not k2Validate(G, start, parents): 
                print "Invalid BFS tree generated by bfsTree" 
                print G, parents 
                break 
        [origI, origJ, ign] = G.toParVec() 
        K2edges += len((parents[origI] != -1).find()) 
 

Technically 

Ecologically 

 



Graph500 Implementation in KDT (p. 2 of 2) 
 def k2Validate(G, start, parents): 

        ret = True 
        bfsRet = G.isBfsTree(start, parents) 
        if type(ret) != tuple: 
                if dg.master(): 
                        print "isBfsTree detected failure of Graph500 test %d" % abs(ret) 
                return False 
        (valid, levels) = bfsRet 
 
        # Spec test #3: 
        [origI, origJ, ign] = G.toParVec() 
        li = levels[origI] 
        lj = levels[origJ] 
        if not ((abs(li-lj) <= 1) | ((li==-1) & (lj==-1))).all(): 
                if dg.master(): 
                    print "At least one graph edge has endpoints whose levels differ by 
                                  more than one and is in the BFS tree" 
                print li, lj 
                ret = False 
 
        # Spec test #4: 
        neither_in = (li == -1) & (lj == -1) 
        both_in = (li > -1) & (lj > -1) 
        out2root = (li == -1) & (origJ == start) 
        if not (neither_in | both_in | out2root).all(): 
                if dg.master(): 
                    print "The tree does not span the connected component exactly, root=%d" % 
                              start 
                ret = False 
 
        # Spec test #5: 
        respects = abs(li-lj) <= 1 
        if not (neither_in | respects).all(): 
                if dg.master(): 
                    print "At least one vertex and its parent are not joined by an 
                               original edge" 
                ret = False 
 
        return ret 

- #1 and #2:  
implemented in isBfsTree 
 
 
 
 
 
 
- #3: every input edge has 
vertices whose levels 
differ by no more than 1.  
Note:  don't actually have 
input edges, will use the 
edges in the resulting 
graph as a proxy 
 
 
 
 
-  #4:   the BFS tree spans 
a connected component's 
vertices (== all edges 
either have both 
endpoints in the tree or 
not in the tree, or source 
is not in tree and 
destination is the root) 
 
 
 
- #5:  a vertex and its 
parent are joined by an 
edge of the original graph 

Technically 

Ecologically 
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