
Deployed Large-Scale Graph Analytics:
Use Cases, Target Audiences, and Knowledge

Discovery Toolbox (KDT) Technology

Aydin Buluc, LBL (abuluc@lbl.gov)

John Gilbert, Adam Lugowski and Drew Waranis, UCSB ({gilbert,alugowski,awaranis}@cs.ucsb.edu)

David Alber and Steve Reinhardt, Microsoft ({david.alber,steve.reinhardt}@microsoft.com)

Knowledge Discovery Toolbox enables rapid
algorithm development and fast execution

for large-scale complex graph analytics

memory

2. Build
input
graph

3. Analyze
input graph

1a. Cull
relevant
historical

data
4. Visualize
result graph

Knowledge Discovery Workflow

1b. Use
streaming

data

memory

2. Build
input
graph

3. Analyze
input graph

1a. Cull
relevant
historical

data
4. Visualize
result graph

Knowledge Discovery Workflow

1b. Use
streaming

data

Data
filtering

technologies

KDT

Graph
viz

engine

Agenda

• Use cases and audiences for graph analytics

• Technology

• Next steps

Graph Analytics

• Graphs arise from
– Social networks (human or animal)

– Transaction networks (e.g., Internet, banking)

– Molecular biological interactions (e.g., protein-protein interactions)

• Many queries are
– Ranking

– Clustering

– Matching / Aligning

• Graphs are not all the same
– Directed simple graphs, hypergraphs, bipartite graphs, with or without

attributes on edges or vertices, …

Use Case: Find Influential People in a Social Network

Warfighters

Use Case: Find Influential People in a Social Network

• Warfighter wants to
understand a social
network (e.g., village,
terrorist group); see
DARPA GUARDDOG

• Specifically, wants to
identify leaders /
influencers

• GUI selects data, calls KDT
to identify top N
influencers

Warfighters

Use Cases

• Homeland security / Understand roles of members of terrorist
groups based on known links between them / “Looking just at
cell-phone communications, who are the leaders?”

• International banking / Detect money laundering / “Find
instances of money being transferred at least 5 times and
coming back to its source.”

Common thread: Enabling the knowledge-discovery domain
expert to analyze graphs directly gets to the “right” answer
faster and possibly at all. (In the embedded context, the end-
user and the KD domain expert are likely different people.)

Audiences

• End-users / warfighters
– True end-user GUI not addressed by KDT

• Knowledge discovery domain experts
– Are experts in something other than graph analytics
– Have large graphs they need to explore as part of their work
– Want simple, robust, scalable, flexible package

• Graph-analytic researchers
– Are experts in graph analytics, machine learning, etc.
– Want to experiment with new algorithms …
– And get feedback from users on efficacy on large data

• Efficiency-level developers
– Call-backs in C++ currently have big performance advantage
– Formatting data for ingest

Agenda

• Use cases and audiences for graph analytics

• Technology

• Next steps

Local v. Global Metrics
Degree Centrality v. Betweenness Centrality

A
B

• Is vertex A or B most central?
– A has directed edges to more vertices (degree centrality)

– B is on more shortest paths between vertex pairs (betweenness centrality)

Local v. Global Metrics
Degree Centrality v. Betweenness Centrality

A
B

• Is vertex A or B most central?
– A has directed edges to more vertices (degree centrality)

– B is on more shortest paths between vertex pairs (betweenness centrality)

Local v. Global Metrics
Degree Centrality v. Betweenness Centrality

A
B

• Is vertex A or B most central?
– A has directed edges to more vertices (degree centrality)

– B is on more shortest paths between vertex pairs (betweenness centrality)

Algorithms: Insight v Graph Traversals
G

ra
ph

 tr
av

er
sa

ls
 (~

=
ex

ec
ut

io
n

tim
e)

Insight

O(|E|)

O(|E|2)
Exact betweenness centrality

Degree centrality

Egocentrality

Approximate betweenness centrality

K-betweenness centrality

Algorithms: Insight v Graph Traversals
G

ra
ph

 tr
av

er
sa

ls
 (~

=
ex

ec
ut

io
n

tim
e)

Insight

O(|E|)

O(|E|2)
Exact betweenness centrality

Degree centrality

Egocentrality

Approximate betweenness centrality

K-betweenness centrality

Search for better
algorithms

Knowledge Discovery Toolbox (KDT)
 Overview

• Target audiences
– Primarily, (non-graph-expert) domain experts needing to analyze large graphs

– Secondarily, graph-algorithm researchers and developers needing access to highly
performant scalable graph infrastructure

• Target use cases
– Broadly, problems needing the detail of algorithms that traverse the graph extensively

– Social-network-based ranking and search

– Homeland security

• Current KDT practicalities
– Abstractions are (semantic) directed graph and sparse and dense vectors, all of which

are distributed across a cluster

– Python interface layered on Combinatorial BLAS
• Delivers full scaling of CombBLAS with negligible Python overhead for non-semantic graphs

– v0.2 release expected in October
• x86-64 clusters running Windows or Linux

– Open-source code available at kdt.sourceforge.net under New BSD license

Parsimony with New Concepts
for Domain Experts

• (Semantic) directed graphs
– constructors, I/O
– basic graph metrics (e.g., degree())

– vectors

• Clustering: Markov, and components

• Ranking: betweenness
 centrality, PageRank

• Matching: k-cycles

• Hypergraphs and sparse matrices

• Graph primitives (e.g., bfsTree())

• SpMV / SpGEMM on semirings

Parsimony with New Concepts
for Domain Experts

• (Semantic) directed graphs
– constructors, I/O
– basic graph metrics (e.g., degree())

– vectors

• Clustering: Markov, and components

• Ranking: betweenness
 centrality, PageRank

• Matching: k-cycles

• Hypergraphs and sparse matrices

• Graph primitives (e.g., bfsTree())

• SpMV / SpGEMM on semirings

bigG contains the input graph
comp = bigG.connComp()
giantComp = comp.hist().argmax()
G = bigG.subgraph(comp==giantComp)

clus = G.cluster(‘Markov’)

clusNedge = G.nedge(clus)

smallG = G.contract(clus)

visualize

Parsimony with New Concepts
for Domain Experts

• (Semantic) directed graphs
– constructors, I/O
– basic graph metrics (e.g., degree())

– vectors

• Clustering: Markov, and components

• Ranking: betweenness
 centrality, PageRank

• Matching: k-cycles

• Hypergraphs and sparse matrices

• Graph primitives (e.g., bfsTree())

• SpMV / SpGEMM on semirings

bigG contains the input graph
comp = bigG.connComp()
giantComp = comp.hist().argmax()
G = bigG.subgraph(comp==giantComp)

clus = G.cluster(‘Markov’)

clusNedge = G.nedge(clus)

smallG = G.contract(clus)

visualize

Markov
Clustering

Input Graph

Largest
Component

Graph of
Clusters

Parsimony with New Concepts
for Domain Experts

• (Semantic) directed graphs
– constructors, I/O
– basic graph metrics (e.g., degree())

– vectors

• Clustering: Markov, and components

• Ranking: betweenness
 centrality, PageRank

• Matching: k-cycles

• Hypergraphs and sparse matrices

• Graph primitives (e.g., bfsTree())

• SpMV / SpGEMM on semirings

bigG contains the input graph
comp = bigG.connComp()
giantComp = comp.hist().argmax()
G = bigG.subgraph(comp==giantComp)

clus = G.cluster(‘Markov’)

clusNedge = G.nedge(clus)

smallG = G.contract(clus)

visualize

Markov
Clustering

Input Graph

Largest
Component

Graph of
Clusters

 […]
L = G.toSpParMat()
d = L.sum(kdt.SpParMat.Column)
L = -L
L.setDiag(d)
M = kdt.SpParMat.eye(G.nvert()) – mu*L
pos = kdt.ParVec.rand(G.nvert())
for i in range(nsteps):
 pos = M.SpMV(pos)

Graph API (v0.2)

Ranking
exact and approx BC,

PageRank

Community
Detection

Network
Vulnerability Analysis

Applications

DiGraph
bfsTree, isBfsTree

plus utility (e.g., DiGraph,nvert,
toParVec,degree,load,UFget,+,*,

sum,subgraph,reverseEdges)
64-bit and single-bit elements

Algorithms and primitives

Graph500

(Sp)Vec
(e.g., +,*,|,&,>,==,[],
abs,max,sum,range,

norm, hist,randPerm,
scale, topK)

Graph-problems

Clustering
Markov, connected

components

SpMat
(e.g., +,*, SpMV,

SpGEMM,
SpMV_SemiRing,

HyGraph
bfsTree, isBfsTree

plus utility (e.g.,
HyGraph,nvert,

toParVec,degree,
load,UFget)

SpMV_SemiRing
SpMM_SemiRing

CombBLAS

Separation of
interfaces

Matching
<None>

semantic
support

(filters,
objects)

Semantic Graph Use Case
“Looking just at cell-phone communications, who are the leaders?”

import kdt

user function that converts a (file) record into an edge

def readRecord(self, sourceV, destV, record):

 sourceV = record[0]

 destV = record[1]

 self.category = record[2]

 self.type = record[3]

 return (sourceVert, destVert, self)

G = kdt.DiGraph.load(‘/file/my/graph/data’, readRecord)

edges for which the edge-filter returns True will
be used in the calculation

edgeFilter = lambda x: x.category == CellPhone

G.addEFilter(edgeFilter)

calculate leaders via approximate betweenness centrality

bc = G.centrality(‘approxBC’)

leaders = bc.topK(10)

Caveat: Currently, expressing the filter in Python (rather than C++) leads to a
big performance decrease; reducing/eliminating this decrease is work in progress.

1

2
3

4

7
6 5

Example Algorithm:
Find a breadth-first tree

starting from a given vertex 16 8

9

10 11
12

13

14

15

17

from

AT

1

17

17 1

to

Cell-phone call

Text message

1

2
3

4

7
6 5

16 8

9

10 11
12

13

14

15

17

X ATX



1
1

1

from

AT

1

17

17 1

to

1

2
3

4

7
6 5

16 8

9

10 11
12

13

14

15

17

X ATX



2
4

2

from

AT

1

17

17 1

to 4
2

2

1

2
3

4

7
6 5

16 8

9

10 11
12

13

14

15

17

from

AT

1

17

17 1

to

X ATX


6

9
8

5

5
6

8
9

1

2
3

4

7
6 5

16 8

9

10 11
12

13

14

15

17

from

AT

1

17

17 1

to

X ATX


10
11

15
16

The Case for Sparse Matrices

Many irregular applications contain
coarse-grained parallelism that can be exploited

by abstractions at the proper level.

Traditional graph
computations

Graphs in the language of
linear algebra

Data driven,
unpredictable communication.

Fixed communication patterns

Irregular and unstructured,
poor locality of reference

Operations on matrix blocks exploit
memory hierarchy

Fine grained data accesses,
dominated by latency

Coarse grained parallelism,
bandwidth limited

The case for sparse matrices

Performance
Graph500 in KDT or Combinatorial BLAS

• Graph500 benchmark on 8B edges, C++ or KDT calling
CombBLAS

• NERSC “Hopper” machine (Cray XE6)
• [Buluç & Madduri]: New hybrid of CombBLAS MPI +

OpenMP gets 25 GTEPS on 2T edges (scale 37) on
43,200 cores of Hopper

0

1

2

3

4

5

6

7

1225 2500 5041

G
TE

PS

Number of cores

KDT

CombBLAS

Performance
 Betweenness Centrality

• With a few hundred cores, can do even a complex graph analysis in
near-interactive time

• 2M edges, approximate betweenness centrality sampling at 3%

0
20
40
60
80
100
120
140

0

100

200

300

400

500

600

1 4 9 16 36 64 121 256

M
eg

a
TE

PS

Se
co

nd
s

Cores

Time (secs) MTEPS

Productivity

• Betweenness centrality
– Python version initially written to SciPy interfaces

– Porting to KDT took 11 hours for working, scalable implementation

• Markov clustering
– Written by an undergraduate in 6 hours

Agenda

• Use cases and audience

• Technology

• Next steps

Next Steps

• Core technology
– Evolve semantic graph support so fully usable

– Implement support for streaming graphs

• Engineering
– Couple with GUI / graph viz package

– Port to Windows Azure

– Accept more data formats

– Extend coverage of clustering, ranking, and matching algorithms

KDT Summary

• Open-source toolbox targeted at domain experts

• Scalable to 10B-edge graphs and thousands of cores

• Limited set of methods, no graph viz yet

• kdt.sourceforge.net for details

• If you

 - have other use cases
 - need specific data formats or methods
 - have developed a method
 please contact me at

Knowledge Discovery Toolbox enables rapid
algorithm development and fast execution

for large-scale complex graph analytics

Backup

Further Info

• Linked, by Albert-Laszlo Barabasi

• Graph Algorithms in the Language of Linear Algebra, by John
Gilbert and Jeremy Kepner, SIAM

KDT Data
filtering viz

Cloud Benefits for Graph Analytics

KDT Data
filtering viz

Cloud Benefits for Graph Analytics

• For domain expert
– Elasticity of compute

resource

– Ready availability of needed
data – what?

– Ready availability of new
methods – which?

• For graph-algorithm
researcher
– Quickly try your algorithm

on big data

– Quickly make it visible to
domain experts

Elastic
compute

and
memory

Needed
big data

Needed
methods

“Transport of the mails, transport of the
human voice, transport of flickering pictures -

- in this century, as in others, our highest
accomplishments still have the single aim of

bringing men together.”
Antoine de Saint-Exupery

Undelivered Possibilities

• Graph viz

• More ranking/clustering/matching options

• Availability in Azure

• Initial stages on disk, later stages in memory

• Dynamic/streaming graphs

Use Case: Find Influential People in a Social Network

MyGroup

Promoter

• Promoter has a SN group

• Wants to identify
influencers on which to
focus marketing efforts so
as to maximize viral effect
of the group

• Calls KDT with group
name, gets back top N
influencers

• Useful for (e.g.) viral
marketing, public health

Comparison to Other Parallel Packages

Package Target users Interface Supported memory*
Graph-alg

devs
Domain
experts

Pegasus X Hadoop Distributed on-disk

Pregel X C++ Distributed on-disk

PBGL X C++ Distributed in-memory

MTGL X C++ Shared

SNAP (GA Tech) X C Shared

SNAP (Stanford) X X C++ / NodeXL Shared

GraphLab X C++ Shared

CombBLAS X C++

Shared or distributed,
in-memory

KDT X X Python Shared or distributed,
in-memory

*“Shared” meaning either cache-coherent or Cray XMT-style

1
2

3

4 7

6

5

AT

1

7

7 1
from

to

Example Implementation:
bfsTree

1
2

3

4 7

6

5

X AT

1

7

7 1
from

to

ATX



1

1

1

Technically

Ecologically

1
2

3

4 7

6

5

X AT

1

7

7 1
from

to

ATX



2

4

4

2

4

Technically

Ecologically

1
2

3

4 7

6

5

X AT

1

7

7 1
from

to

ATX


3

5

7

5

Technically

Ecologically

1
2

3

4 7

6

5

X AT

1

7

7 1
from

to

ATX



6

Technically

Ecologically

Many Graphs Don’t Decompose Simply onto
Distributed Memory

• 4n exchanges
• n^2 FLOPS
• Good locality

• 4n exchanges
• n^2 FLOPS
• Good locality

• ? exchanges
• ? OPS
• Usually poor locality,

hence frequent comms,
hence often a poor
match for MapReduce

Identification of Primitives

Sparse matrix-matrix
multiplication (SpGEMM)

Element-wise operations

×

Matrices on various semirings: (x, +) , (and, or) , (+, min) , …

Sparse matrix-dense
vector multiplication

Sparse matrix indexing

×

.*

 Sparse array-based primitives

Some Combinatorial BLAS functions

bfsTree Implementation in KDT, for DiGraphs
(Kernel 2 of Graph500)

def bfsTree(self, root, sym=False):

 if not sym:

 self.T() # synonym for reverseEdges

 parents = dg.ParVec(self.nvert(), -1)

 fringe = dg.SpParVec(self.nvert())

 parents[root] = root

 fringe[root] = root

 while fringe.nnn() > 0:

 fringe.spRange()

 self._spm.SpMV_SelMax_inplace(fringe._spv)
 pcb.EWiseMult_inplacefirst(fringe._spv,

 parents._dpv, True, -1)

 parents[fringe] = fringe

 if not sym:

 self.T()

 return parents

• SpMV and EWiseMult
are CombBLAS ops that
do not yet have good
graph abstractions

– pathsHop is an attempt for
one flavor of SpMV

Technically

Ecologically

pageRank Implementation in KDT (p. 1 of 2)
 def pageRank(self, epsilon = 0.1, dampingFactor = 0.85):

 # We don't want to modify the user's graph.
 G = self.copy()
 nvert = G.nvert()

 G._spm.removeSelfLoops()

 # Handle sink nodes (nodes with no outgoing edges) by
 # connecting them to all other nodes.
 degout = G.degree(gr.Out)
 nonSinkNodes = degout.findInds()
 nSinkNodes = nvert - len(nonSinkNodes)
 iInd = ParVec(nSinkNodes*(nvert))
 jInd = ParVec(nSinkNodes*(nvert))
 wInd = ParVec(nSinkNodes*(nvert), 1)
 sinkSuppInd = 0

 for ind in range(nvert):
 if degout[ind] == 0:
 # Connect to all nodes.
 for sInd in range(nvert):
 iInd[sinkSuppInd] = sInd
 jInd[sinkSuppInd] = ind
 sinkSuppInd = sinkSuppInd + 1
 sinkMat = pcb.pySpParMat(nvert, nvert,
 iInd._dpv, jInd._dpv, wInd._dpv)
 sinkG = DiGraph()
 sinkG._spm = sinkMat

• This portion
looks more like
graph operations

Technically

Ecologically

pageRank Implementation in KDT (p. 2 of 2)
(main loop)

 G.normalizeEdgeWeights()
 sinkG.normalizeEdgeWeights()

 # PageRank loop
 delta = 1
 dv1 = ParVec(nvert, 1./nvert)
 v1 = dv1.toSpParVec()
 prevV = SpParVec(nvert)
 dampingVec = SpParVec.ones(nvert) *
 ((1 - dampingFactor)/nvert)
 while delta > epsilon:
 prevV = v1.copy()
 v2 = G._spm.SpMV_PlusTimes(v1._spv) + \
 sinkG._spm.SpMV_PlusTimes(v1._spv)
 v1._spv = v2
 v1 = v1*dampingFactor + dampingVec
 delta = (v1 - prevV)._spv.Reduce(pcb.plus(),
 pcb.abs())
 return v1

• This portion looks
much more like
matrix algebra

Technically

Ecologically

Graph500 Implementation in KDT (p. 1 of 2)
 scale = 15

nstarts = 640

GRAPH500 = 1
if GRAPH500 == 1:
 G = dg.DiGraph()
 K1elapsed = G.genGraph500Edges(scale)

 if nstarts > G.nvert():
 nstarts = G.nvert()
 deg3verts = (G.degree() > 2).findInds()
 deg3verts.randPerm()
 starts = deg3verts[dg.ParVec.range(nstarts)]

G.toBool()

K2elapsed = 1e-12
K2edges = 0
for start in starts:
 start = int(start)
 if start==0: #HACK: avoid root==0 bugs for now
 continue
 before = time.time()
 parents = G.bfsTree(start, sym=True)
 K2elapsed += time.time() - before
 if not k2Validate(G, start, parents):
 print "Invalid BFS tree generated by bfsTree"
 print G, parents
 break
 [origI, origJ, ign] = G.toParVec()
 K2edges += len((parents[origI] != -1).find())

Technically

Ecologically

Graph500 Implementation in KDT (p. 2 of 2)
 def k2Validate(G, start, parents):

 ret = True
 bfsRet = G.isBfsTree(start, parents)
 if type(ret) != tuple:
 if dg.master():
 print "isBfsTree detected failure of Graph500 test %d" % abs(ret)
 return False
 (valid, levels) = bfsRet

 # Spec test #3:
 [origI, origJ, ign] = G.toParVec()
 li = levels[origI]
 lj = levels[origJ]
 if not ((abs(li-lj) <= 1) | ((li==-1) & (lj==-1))).all():
 if dg.master():
 print "At least one graph edge has endpoints whose levels differ by
 more than one and is in the BFS tree"
 print li, lj
 ret = False

 # Spec test #4:
 neither_in = (li == -1) & (lj == -1)
 both_in = (li > -1) & (lj > -1)
 out2root = (li == -1) & (origJ == start)
 if not (neither_in | both_in | out2root).all():
 if dg.master():
 print "The tree does not span the connected component exactly, root=%d" %
 start
 ret = False

 # Spec test #5:
 respects = abs(li-lj) <= 1
 if not (neither_in | respects).all():
 if dg.master():
 print "At least one vertex and its parent are not joined by an
 original edge"
 ret = False

 return ret

- #1 and #2:
implemented in isBfsTree

- #3: every input edge has
vertices whose levels
differ by no more than 1.
Note: don't actually have
input edges, will use the
edges in the resulting
graph as a proxy

- #4: the BFS tree spans
a connected component's
vertices (== all edges
either have both
endpoints in the tree or
not in the tree, or source
is not in tree and
destination is the root)

- #5: a vertex and its
parent are joined by an
edge of the original graph

Technically

Ecologically

	Deployed Large-Scale Graph Analytics: �Use Cases, Target Audiences, and Knowledge Discovery Toolbox (KDT) Technology
	Slide Number 2
	Knowledge Discovery Workflow
	Knowledge Discovery Workflow
	Agenda
	Graph Analytics
	Use Case: Find Influential People in a Social Network
	Use Case: Find Influential People in a Social Network
	Use Cases
	Audiences
	Agenda
	Local v. Global Metrics�Degree Centrality v. Betweenness Centrality
	Local v. Global Metrics�Degree Centrality v. Betweenness Centrality
	Local v. Global Metrics�Degree Centrality v. Betweenness Centrality
	Algorithms: Insight v Graph Traversals
	Algorithms: Insight v Graph Traversals
	Knowledge Discovery Toolbox (KDT)� Overview
	Parsimony with New Concepts�for Domain Experts
	Parsimony with New Concepts�for Domain Experts
	Parsimony with New Concepts�for Domain Experts
	Parsimony with New Concepts�for Domain Experts
	Graph API (v0.2)
	Semantic Graph Use Case�“Looking just at cell-phone communications, who are the leaders?”
	Example Algorithm:�Find a breadth-first tree�starting from a given vertex
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	The Case for Sparse Matrices
	Performance�Graph500 in KDT or Combinatorial BLAS
	Performance� Betweenness Centrality
	Productivity
	Agenda
	Next Steps
	KDT Summary
	Slide Number 36
	Backup
	Further Info
	Cloud Benefits for Graph Analytics
	Cloud Benefits for Graph Analytics
	“Transport of the mails, transport of the human voice, transport of flickering pictures -- in this century, as in others, our highest accomplishments still have the single aim of bringing men together.” �Antoine de Saint-Exupery
	Undelivered Possibilities
	Use Case: Find Influential People in a Social Network
	Comparison to Other Parallel Packages
	Example Implementation:�bfsTree
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Many Graphs Don’t Decompose Simply onto Distributed Memory
	Identification of Primitives
	Some Combinatorial BLAS functions
	bfsTree Implementation in KDT, for DiGraphs�(Kernel 2 of Graph500)
	pageRank Implementation in KDT (p. 1 of 2)�
	pageRank Implementation in KDT (p. 2 of 2)�(main loop)
	Graph500 Implementation in KDT (p. 1 of 2)�
	Graph500 Implementation in KDT (p. 2 of 2)�

