PetaBricks: A Language and Compiler based on Autotuning

Saman Amarasinghe

Joint work with
Jason Ansel, Marek Olszewski, Cy Chan, Yee Lok Wong, Maciej Pacula, Una-May O'Reilly and Alan Edelman

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Outline

• Four Observations
• Evolution of Programming Languages
• PetaBricks
 – Language
 – Compiler
 – Results
 – Variable Precision
Observation 1: Software Lifetime >> Hardware

- Lifetime of a software application is 30+ years
- Lifetime of a computer system is less than 6 years
 - New hardware every 3 years
- Multiple Ports
 - Huge manual effort on tuning
 - “Software Quality” deteriorates in each port
- Needs performance portability
 - Do to performance what Java did to functionality
 - Future Proofing Programs
Observation 2: Algorithmic Choice

- For many problems there are multiple algorithms
 - Most cases there is no single winner
 - An algorithm will be the best performing for a given:
 - Input size
 - Amount of parallelism
 - Communication bandwidth / synchronization cost
 - Data layout
 - Data itself (sparse data, convergence criteria etc.)

- Multicores exposes many of these to the programmer
 - Exponential growth of cores (impact of Moore’s law)
 - Wide variation of memory systems, type of cores etc.

- No single algorithm can be the best for all the cases
Observation 3: Natural Parallelism

• World is a parallel place
 - It is natural to many, e.g. mathematicians
 - ●, sets, simultaneous equations, etc.

• It seems that computer scientists have a hard time thinking in parallel
 - We have unnecessarily imposed sequential ordering on the world
 - Statements executed in sequence
 - for i= 1 to n
 - Recursive decomposition (given f(n) find f(n+1))

• This was useful at one time to limit the complexity.... But a big problem in the era of multicores
Observation 4: Autotuning

- **Good old days** → model based optimization
- **Now**
 - Machines are too complex to accurately model
 - Compiler passes have many subtle interactions
 - Thousands of knobs and billions of choices
- **But...**
 - Computers are cheap
 - We can do end-to-end execution of multiple runs
 - Then use machine learning to find the best choice
Outline

• Four Observations
• Evolution of Programming Languages
• PetaBricks
 – Language
 – Compiler
 – Results
 – Variable Precision
Ancient Days...

- Computers had limited power
- Compiling was a daunting task
- Languages helped by limiting choice
- Overconstraint programming languages that express only a single choice of:
 - Algorithm
 - Iteration order
 - Data layout
 - Parallelism strategy
...as we progressed....

- Computers got faster
- More cycles available to the compiler
- Wanted to optimize the programs, to make them run better and faster
... and we ended up at

- Computers are extremely powerful
- Compilers want to do a lot
- But... the same old overconstraint languages
 - They don’t provide too many choices
- Heroic analysis to rediscover some of the choices
 - Data dependence analysis
 - Data flow analysis
 - Alias analysis
 - Shape analysis
 - Interprocedural analysis
 - Loop analysis
 - Parallelization analysis
 - Information flow analysis
 - Escape analysis
 - ...
Need to Rethink Languages

• **Give Compiler a Choice**
 - Express ‘intent’ not ‘a method’
 - Be as verbose as you can

• **Muscle outpaces brain**
 - Compute cycles are abundant
 - Complex logic is too hard
Outline

• Four Observations
• Evolution of Programming Languages
• PetaBricks
 – Language
 – Compiler
 – Results
 – Variable Precision
transform MatrixMultiply

from \(A[c,h], B[w,c]\)
to \(AB[w,h]\)

{
 // Base case, compute a single element
 // To \((AB)\text{.cell}(x,y)\) out
 from (A.row\(y\) a, B.column\(x\) b) {
 out = dot(a, b);
 }
}
PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }
}

// Recursively decompose in c
 to(AB ab)
 from(A.region(0, 0, c/2, h) a1,
 A.region(c/2, 0, c, h) a2,
 B.region(0, 0, w, c/2) b1,
 B.region(0, c/2, w, c) b2) {
 ab = MatrixAdd(MatrixMultiply(a1, b1),
 MatrixMultiply(a2, b2));
 }

• Implicitly parallel description

• Algorithmic choice
transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }

 // Recursively decompose in c
 to(AB ab)
 from(A.region(0, 0, c/2, h) a1,
 A.region(c/2, 0, c, h) a2,
 B.region(0, 0, w, c/2) b1,
 B.region(c/2, 0, w, c) b2) {
 ab = MatrixAdd(MatrixMultiply(a1, b1),
 MatrixMultiply(a2, b2));
 }
 // Recursively decompose in w
 to(AB.region(0, 0, w/2, h) ab1,
 AB.region(w/2, 0, w, h) ab2)
 from(A a,
 B.region(0, 0, w/2, c) b1,
 B.region(w/2, 0, w, c) b2) {
 ab1 = MatrixMultiply(a, b1);
 ab2 = MatrixMultiply(a, b2);
 }
transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }

 // Recursively decompose in c
 to(AB ab)
 from(A.region(0, 0, c/2, h) a1,
 A.region(c/2, 0, c, h) a2,
 B.region(0, 0, w, c/2) b1,
 B.region(0, c/2, w, c) b2) {
 ab = MatrixAdd(MatrixMultiply(a1, b1),
 MatrixMultiply(a2, b2));
 }

 // Recursively decompose in w
 to(AB.region(0, 0, w/2, h) ab1,
 AB.region(w/2, 0, w, h) ab2)
 from(A a,
 B.region(0, 0, w/2, c) b1,
 B.region(w/2, 0, w, c) b2) {
 ab1 = MatrixMultiply(a, b1);
 ab2 = MatrixMultiply(a, b2);
 }

 // Recursively decompose in h
 to(AB.region(0, 0, w, h/2) ab1,
 AB.region(0, h/2, w, h) ab2)
 from(A.region(0, 0, c, h/2) a1,
 A.region(0, h/2, c, h) a2,
 B b) {
 ab1=MatrixMultiply(a1, b);
 ab2=MatrixMultiply(a2, b);
 }
}
PetaBricks Language

transform Strassen
 from A11[n,n], A12[n,n], A21[n,n], A22[n,n],
 B11[n,n], B12[n,n], B21[n,n], B22[n,n]
 through M1[n,n], M2[n,n], M3[n,n], M4[n,n], M5[n,n], M6[n,n], M7[n,n]
 to C11[n,n], C12[n,n], C21[n,n], C22[n,n]
{
 to(M1 m1) from(A11 a11, A22 a22, B11 b11, B22 b22) using(t1[n,n], t2[n,n]) {
 MatrixAdd(t1, a11, a22);
 MatrixAdd(t2, b11, b22);
 MatrixMultiplySqr(m1, t1, t2);
 }

 to(M2 m2) from(A21 a21, A22 a22, B11 b11) using(t1[n,n]) {
 MatrixAdd(t1, a21, a22);
 MatrixMultiplySqr(m2, t1, b11);
 }

 to(M3 m3) from(A11 a11, B12 b12, B22 b22) using(t1[n,n]) {
 MatrixSub(t2, b12, b22);
 MatrixMultiplySqr(m3, a11, t2);
 }

 to(M4 m4) from(A22 a22, B21 b21, B11 b11) using(t1[n,n]) {
 MatrixSub(t2, b21, b11);
 MatrixMultiplySqr(m4, a22, t2);
 }

 to(M5 m5) from(A11 a11, A12 a12, B22 b22) using(t1[n,n]) {
 MatrixAdd(t1, a11, a12);
 MatrixMultiplySqr(m5, t1, b22);
 }

 to(M6 m6) from(A21 a21, A11 a11, B11 b11, B12 b12) using(t1[n,n], t2[n,n]) {
 MatrixSub(t1, a21, a11);
 MatrixAdd(t2, b11, b12);
 MatrixMultiplySqr(m6, t1, t2);
 }

 to(M7 m7) from(A12 a12, A22 a22, B21 b21, B22 b22) using(t1[n,n], t2[n,n]) {
 MatrixSub(t1, a12, a22);
 MatrixAdd(t2, b21, b22);
 MatrixMultiplySqr(m7, t1, t2);
 }

 to(C11 c11) from(M1 m1, M4 m4, M5 m5, M7 m7) {
 MatrixAddAddSub(c11, m1, m4, m5, m7);
 }

 to(C12 c12) from(M3 m3, M5 m5) {
 MatrixAdd(c12, m3, m5);
 }

 to(C21 c21) from(M2 m2, M4 m4) {
 MatrixAdd(c21, m2, m4);
 }

 to(C22 c22) from(M1 m1, M2 m2, M3 m3, M6 m6) {
 MatrixAddAddSub(c22, m1, m3, m6, m2);
 }
}
Language Support for Algorithmic Choice

- Algorithmic choice is the key aspect of PetaBricks
- Programmer can define multiple rules to compute the same data
- Compiler re-use rules to create hybrid algorithms
- Can express choices at many different granularities
Synthesized Outer Control Flow

• Outer control flow synthesized by compiler
• Another choice that the programmer should not make
 - By rows?
 - By columns?
 - Diagonal? Reverse order? Blocked?
 - Parallel?
• Instead programmer provides explicit producer-consumer relations
• Allows compiler to explore choice space
Outline

• Four Observations
• Evolution of Programming Languages
• PetaBricks
 - Language
 - Compiler
 - Results
 - Variable Precision
Compilation Process

- Applicable Regions
- Choice Grids
- Choice Dependency Graphs
1. PetaBricks source code is compiled
2. An autotuning binary is created
3. Autotuning occurs creating a choice configuration file
4. Choices are fed back into the compiler to create a static binary
Autotuning

• Based on two building blocks:
 – A genetic tuner
 – An n-ary search algorithm

• Flat parameter space

• Compiler generates a dependency graph describing this parameter space

• Entire program tuned from bottom up
Outline

• Four Observations
• Evolution of Programming Languages
• PetaBricks
 – Language
 – Compiler
 – Results
 – Variable Precision
Algorithmic Choice in Sorting

- Mergesort (N-way)
- Insertionsort
- Radixsort
- Quicksort
Algorithmic Choice in Sorting

Mergesort (N-way)

Insertionsort

Radixsort

Quicksort

STL Algorithm

N=2

@15
Algorithmic Choice in Sorting

- **Mergesort (N-way)**
- **Insertionsort**
- **Radixsort**
- **Quicksort**

Optimized For: Xeon (1 core)
Algorithmic Choice in Sorting

- **Mergesort (N-way)**
 - @98
 - N=4

- **Insertionsort**
 - @75
 - N=2

- **Radixsort**
 - @1420

- **Quicksort**
 - @600

Optimized For:
- Xeon (1 core)
- Xeon (8 cores)
Algorithmic Choice in Sorting

Mergesort (N-way)

N=2, 4, 8, 16

Insertionsort

N=4

N=2

Radixsort

@75
@1461
@2400

@98
@1420

Quicksort

@75

@600

Optimized For:

Xeon (1 core)

Xeon (8 cores)

Niagra (8 cores)
Future Proofing Sort

<table>
<thead>
<tr>
<th>System</th>
<th>Cores used</th>
<th>Scalability</th>
<th>Algorithm Choices (w/ switching points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile</td>
<td>Core 2 Duo Mobile</td>
<td>2 of 2</td>
<td>1.92</td>
</tr>
<tr>
<td>Xeon 1-way</td>
<td>Xeon E7340 (2 x 4 core)</td>
<td>1 of 8</td>
<td>-</td>
</tr>
<tr>
<td>Xeon 8-way</td>
<td>Xeon E7340 (2 x 4 core)</td>
<td>8 of 8</td>
<td>5.69</td>
</tr>
<tr>
<td>Niagara</td>
<td>Sun Fire T200</td>
<td>8 of 8</td>
<td>7.79</td>
</tr>
</tbody>
</table>
Future Proofing Sort

<table>
<thead>
<tr>
<th>System</th>
<th>Cores used</th>
<th>Scalability</th>
<th>Algorithm Choices (w/ switching points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Core 2 Duo Mobile</td>
<td>2 of 2</td>
<td>1.92</td>
<td>IS (150) 8MS (600) 4MS (1295) 2MS (38400) QS (•)</td>
</tr>
<tr>
<td>Xeon 1-way Xeon E7340 (2 x 4 core)</td>
<td>1 of 8</td>
<td>-</td>
<td>IS (75) 4MS (98) RS (•)</td>
</tr>
<tr>
<td>Xeon 8-way Xeon E7340 (2 x 4 core)</td>
<td>8 of 8</td>
<td>5.69</td>
<td>IS (600) QS (1420) 2MS (•)</td>
</tr>
<tr>
<td>Niagara Sun Fire T200</td>
<td>8 of 8</td>
<td>7.79</td>
<td>16MS (75) 8MS (1461) 4MS (2400) 2MS (•)</td>
</tr>
</tbody>
</table>

Trained On

<table>
<thead>
<tr>
<th>Run On</th>
<th>Mobile</th>
<th>Xeon 1-way</th>
<th>Xeon 8-way</th>
<th>Niagara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile</td>
<td>-</td>
<td>1.09x</td>
<td>1.67x</td>
<td>1.47x</td>
</tr>
<tr>
<td>Xeon 1-way</td>
<td>1.61x</td>
<td>-</td>
<td>2.08x</td>
<td>2.50x</td>
</tr>
<tr>
<td>Xeon 8-way</td>
<td>1.59x</td>
<td>2.14x</td>
<td>-</td>
<td>2.35x</td>
</tr>
<tr>
<td>Niagara</td>
<td>1.12x</td>
<td>1.51x</td>
<td>1.08x</td>
<td>-</td>
</tr>
</tbody>
</table>
Eigenvector Solve

![Graph showing eigenvector solve time vs. size for different methods: Bisection, DC, and QR.](image-url)
Eigenvector Solve

Time

Size

- Bisection
- DC
- QR
- Autotuned
Outline

• Four Observations
• Evolution of Programming Languages
• PetaBricks
 – Language
 – Compiler
 – Results
 – Variable Precision
Variable Accuracy Algorithms

• Lots of algorithms where the accuracy of output can be tuned:
 - Iterative algorithms (e.g. solvers, optimization)
 - Signal processing (e.g. images, sound)
 - Approximation algorithms

• Can trade accuracy for speed

• All user wants: Solve to a certain accuracy as fast as possible using whatever algorithms necessary!
A Very Brief Multigrid Intro

- Used to iteratively solve PDEs over a gridded domain
- **Relaxations** update points using neighboring values (stencil computations)
- **Restrictions** and **Interpolations** compute new grid with coarser or finer discretization

\[
\begin{array}{c}
\text{Resolution} \\
\uparrow \\
\text{Compute Time}
\end{array}
\]

- Relax on current grid
- Restrict to coarser grid
- Interpolate to finer grid
Multigrid Cycles

V-Cycle

How coarse do we go?

W-Cycle

Relaxation operator?

Full MG V-Cycle

How many iterations?

Standard Approaches
Multigrid Cycles

• Generalize the idea of what a multigrid cycle can look like

• Example:

 - Goal: Auto-tune cycle shape for specific usage
Algorithmic Choice in Multigrid

- Need framework to make fair comparisons
- Perspective of a specific grid resolution
- How to get from A to B?

Direct

A \[\rightarrow\] B

Iterative

A \(\rightarrow\) B

Recursive

A \(\rightarrow\) B

Restrict \(\rightarrow\) ? \(\rightarrow\) Interpolate
Auto-tuning the V-cycle

\[
\text{transform Multigrid}_k \
\text{from } X[n,n], B[n,n] \
\text{to } Y[n,n]
\]

\{
\begin{align*}
\text{OR} & \quad \text{// Base case} \\
& \quad \text{// Direct solve}
\end{align*}
\]

\begin{align*}
\text{OR} & \quad \text{// Base case} \\
& \quad \text{// Iterative solve at current resolution}
\end{align*}

\begin{align*}
\text{OR} & \quad \text{// Recursive case} \\
& \quad \text{// For some number of iterations} \\
& \quad \text{// Relax} \\
& \quad \text{// Compute residual and restrict} \\
& \quad \text{// Call Multigrid}_i \text{ for some } i \\
& \quad \text{// Interpolate and correct} \\
& \quad \text{// Relax}
\end{align*}

- Algorithmic choice
 - Shortcut base cases
 - Recursively call some optimized sub-cycle

- Iterations and recursive accuracy let us explore accuracy versus performance space

- Only remember “best” versions
Optimal Subproblems

- Plot all cycle shapes for a given grid resolution:

- Idea: Maintain a family of optimal algorithms for each grid resolution

```plaintext
Keep only the optimal ones!
```

- Idea: Maintain a **family** of optimal algorithms for each grid resolution

```plaintext
Better
```
The Discrete Solution

- **Problem:** Too many optimal cycle shapes to remember

- **Solution:** Remember the fastest algorithms for a discrete set of accuracies
Use Dynamic Programming to Manage Auto-tuning Search

- Only search cycle shapes that utilize optimized sub-cycles in recursive calls
- Build optimized algorithms from the bottom up
- Allow shortcuts to stop recursion early
- Allow multiple iterations of sub-cycles to explore time vs. accuracy space
Example: Auto-tuned 2D Poisson’s Equation Solver

Accy. 10

Accy. 10³

Accy. 10⁷

Finer

4096

2048

1024

512

256

128

64

32

Coarser

2x

1x

2x

1x

1x

1x

DIRECT
Poisson

Matrix Size: 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049

Time: 0.0001221, 0.0009766, 0.0078125, 0.0625, 0.5, 4, 32, 256

Methods: Direct, Jacobi, SOR, Multigrid
Conclusion

• Time has come for languages based on autotuning

• Convergence of multiple forces
 - The Multicore Menace
 - Future proofing when machine models are changing
 - Use more muscle (compute cycles) than brain (human cycles)

• PetaBricks – We showed that it can be done!

• Will programmers accept this model?
 - A little more work now to save a lot later
 - Complexities in testing, verification and validation