

FPGA-based Acceleration of Hyperspectral K-Means Clustering

David A. Kusinsky* MIT Lincoln Laboratory

Professor Miriam Leeser

Reconfigurable and GPU Computing Laboratory Northeastern University

- K-means clustering
 - An unsupervised and iterative clustering algorithm
 - Clusters N observations into K clusters
 - Observations assigned to cluster with nearest mean
 - Cluster means adjusted to average of current members
 - Number of iterations can be fixed, or a termination criterion can be used to end clustering
 - Our research uses fixed iterations

K-Means Clustering Algorithm

*This work is sponsored by the Department of the Air Force under Air Force Contract FA8721-05-C-0002. The opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government. Approved for public release – distribution is unlimited.

K-Means Clustering

- K-means clustering is useful in determining spectrally similar pixels in multi/hyperspectral images
- All computations can be performed using an FPGA
- The current research clusters eight spectral channels from a 360-band hyperspectral image into eight clusters

Eight-Channel Test Image (Single Band Shown)

K-Means Clustered Image (Eight Clusters)

Host PC

- FPGA implementation by Wang exploits parallelism of k-means calculations [1]
 - Pixel-to-cluster mean distances computed in parallel for all clusters
 - Adder and comparator trees, etc. used to lower latency
- Current research utilizes updated VHDL design on ML605 board with Virtex6 FPGA to improve performance
 - PCI Express and high-speed
 FIFO used for data transfer
 to/from DDR3 memory on ML605
 - Latest version of Northeastern University's Variable Precision Floating Point (VFLOAT) library integrated into design

PCI Express (x8 Gen1)

RAM

User App

&

Driver

K-Means Clustering Results

- Performance estimates from software k-means clustering versus FPGA k-means clustering simulations
- PCI Express for data transfer enables streaming pixel data during algorithm execution
 - FPGA total speedup now limited by k-means computation time for larger problem sizes

lter.	SW Compute (s)	SW Total (s)	FPGA Compute & Transfer (s)	FPGA Compute Speedup (x)	FPGA Total Speedup (x)
1	0.093	2.68	0.0025	37.1	1079
20	1.90	4.52	0.0503	37.8	89.9
50	4.75	7.36	0.126	37.8	58.6
1000	95.4	98.0	2.52	37.9	39
5000	475	478	12.6	37.8	38

References

[1] X. Wang and M. Leeser, "VFloat: A Variable Precision Fixed- and Floating-Point Library for Reconfigurable Hardware," ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 3, September 2010.