
Case Studies Using the Open Compute Language Specification
Brian Sroka, Andrew Pakalnietis, Joseph Francoeur

The MITRE Corporation
 bsroka@mitre.org, pakalnietis@mitre.org, jfrancoe@mitre.org

Introduction1

In this talk we will present a number of kernel and
application case studies using the Open Compute Language
(OpenCL) specification. Specifically we will compare and
contrast the specification to the popular Common Uniform
Device Architecture (CUDA) that is used to program
Graphic Processing Units from NVIDIA. We will present
details on the performance, scalability, and portability of
the OpenCL software along with the impact to software
lines of code.

Background2

While modern multicore microprocessors and accelerators
continue to provide increased, theoretical performance, it is
more difficult to realize these gains in software and only at
the cost of greatly increased development complexity. The
increase in complexity is primarily caused by two factors.
The first problem is that there has not existed, until the
definition of the OpenCL specification, a standard language
or interface for programming multicores and accelerators.
Historically, it took significant efforts to develop optimized
libraries for just one target architecture. An effort
necessarily repeated for each new microprocessor or
accelerator. A second problem is that while co-processors
are intended to run concurrently with host application
software, synchronization beyond the shared-memory
boundary has typically been done by utilizing message
passing which is tedious to develop. Interfaces, libraries,
and compiler tools have varied across different accelerators,
making it difficult to generalize the solutions thereby
impacting software portability and maintenance.

The OpenCL standard has effectively addressed the first
problem by providing utilities to query the underlying
microprocessor or accelerator architecture. Architecture
features such as memory and cache sizes, vector widths,
and the number of processing and compute elements can
now be queried through OpenCL functions. While careful
and complex programming is still required, the resulting
software is not only portable across various hardware
architectures but also optimized.

The second synchronization or task management problem is
only partly addressed by the OpenCL standard within the
shared-memory boundary and is not addressed at all by
OpenCL beyond the shared-memory boundary. The
OpenCL programming model is presently limited to the
main processing unit and directly attached processors (such
as Graphics Processing Units). The main processor
generally acts as a controller over attached processors. This

limit is imposed by OpenCL memory model where all
attached processors must be able to access the main
processors memory. However, many computation-intensive
applications require more processors than can be generally
contained in an OpenCL unit. So while there exists support
for command queues and specifying jobs dependencies, it
does not extend past the shared memory limitation of
OpenCL into the distributed application environment
required.

In the realm of parallel processing, there have been
numerous support libraries, languages and extensions, and
tools developed for multiprocessor architectures based on
shared memory. These facilities do not apply well or at all
when there are multiple processors that do not have shared
memory, as is the case with the OpenCL environment. It is
left to the application developer to write discrete software
units that must be distributed to all other processors using
tedious software facilities for identifying available
resources, dispatching and activating code, and sending and
receiving results. Frameworks such as MPI, Corba, RMI,
and Erlang internal actor-to-actor communications have
been developed for message passing, but this only
addresses part of the problem and still saddles the developer
with many details to manage.

Technical Approach
Two technologies have been examined to address the multi-
node-OpenCL problem. First, the Message Passing
Interface (MPI) is being used to combine multi-node
OpenCL environments. This approach has been used in the
past to join shared memory OpenMP environments into
larger computation clusters to tackle computational fluid
dynamics applications such as weather and climate
modeling, and/or weapon and armor design. This
development environment is challenging but provides
baseline metrics for the state of the practice for many HPC
applications.

The second technology examined to manage the
synchronization and task management challenges in a
multi-node-OpenCL environment is GridGain. GridGain is
a High Performance Cloud Computing software
infrastructure that enables development of highly scalable
distributed applications that perform on any grid or cloud
infrastructure. GridGain provides state of the art
implementations for computational grids, data grids, and
cloud auto-scaling. The appeal of GridGain is that it
provides many features that make development of highly
scalable distributed applications easier and more productive
than the MPI alternative.

mailto:bsroka@mitre.org�
mailto:pakalnietis@mitre.org�
mailto:jfrancoe@mitre.org�

Case Studies
To compare and contrast OpenCL to CUDA, the MITRE
team developed two kernel benchmarks. One performs a
covariance calculation and the second performs a Fourier
transform. For the covariance benchmark the team
developed both an OpenCL and a CUDA implementation.
For the Fourier benchmark the team developed an OpenCL
implementation and compared the results to cuFFT, an open
source CUDA implementation.

To help evaluate the two multi-node-OpenCL approaches,
the team is actively developed two OpenCL-optimized real-
world applications. The first is a moving target indicator
radar (MTI) application. The MTI software was initially
written in Matlab and our analysis required the translation
of the code to ANSI-C prior to the application of OpenCL.
Preliminary results for the OpenCL MTI application
demonstrate an order of magnitude improvement provided
by the optimization.

The second application concerns fingerprint matching
algorithms. This software is written using CUDA
technology. CUDA shares many similarities with OpenCL
and this software translation was considerable more
straight-forward. As we move forward into a multi-node-
OpenCL solution, the team plans to measure the overhead
of incorporating both MPI and GridGain into these
applications where appropriate.

References
 [1] The Open Compute Language Specification URL:

http://www.khronos.org/opencl/

[2] Common Uniform Device Architecture URL:
http://www.nvidia.com/object/cuda_home_new.html

[3] Gridgain URL: http://www.gridgain.com/

http://www.khronos.org/opencl/�
http://www.nvidia.com/object/cuda_home_new.html�
http://www.gridgain.com/�

	Introduction0F
	Background1F
	Technical Approach

