
Implementation of Digital Front End Processing Algorithms with Portability
across Multiple Processing Platforms

John Holland, Northrop Grumman Corporation, John.Holland@ngc.com

Jeremy W. Horner, Northrop Grumman Corporation, Jeremy.Horner@ngc.com

Randy Kuning, Northrop Grumman Corporation, Randy.Kuning@ngc.com

David B. Oeffinger, Northrop Grumman Corporation, David.Oeffinger@ngc.com

Abstract
1

Digital front end processing algorithms are commonly

used in many systems such as radar, electronic warfare, or

communication systems. Algorithms can include filtering,

tuning, channelizing, digital beamforming and are used

across different user systems – space, airborne, shipboard,

and land-based. Because of the wide variety of uses, real-

time digital front end processing algorithms are embedded

on many different hardware platforms. This paper

describes a process for implementing these algorithms on

different hardware platforms – ASIC, FPGA, or software

on both custom and COTS hardware – as a means of

providing computing technologies for different or

challenging form factors.

Hardware Architecture Development
Figure 1 shows an architecture development process that

implements a generic algorithm using a given technology.

Architecture Development Process

Requirements & Capabilities Establish Trade Space Partitioning Trade Final Architecture Selection

A
lg

o
ri
th

m
S

y
s
te

m
T

e
c
h

n
o

lo
g

y

Operations, Data

Dependancies, and

Processing Timeline

Cost: Size, Weight, Power, NRE

Benefit:
Resources: (Logic, Memory, I/O)

Performance: Clock Frequency

Concept of Operations,

Reliability, Survivability,

Affordability

Develop and Rank

Evaluation Criteria

If required, Request

Requirements Relief

Identify Technology

Limitations

Eliminate

Technologies that

violate System

Requirements

Identify Candidate

Architectures that

map the Algorithm

Requirements into

the Technology

Resources

Cost/Benefit Analysis:

Maximizing Technology Resources within

Technology Limitations will minimize cost

Select Architecture

from Candidates

Based on Established

Evaluation Criteria and

System Cost/Benefit

Analysis

Figure 1: Architecture development process

Requirements & Capabilities – Phase 1 determines the

system and algorithm requirements and evaluates the

capabilities of candidate hardware. The process begins

with an algorithm’s generic architecture and tailors it to

meet the system requirements, concept of operations,

environmental conditions, and cost constraints. The

tailored algorithm is then analyzed to determine its data

dependencies and its performance, memory, and I/O

requirements. Finally, a cost/benefit analysis is performed

in order to understand the relative strengths and

weaknesses of each technology.

Establish Trade Space – In Phase 2, critical system

requirements (e.g. survivability) immediately eliminate

some technologies from the trade space. Those remaining

are evaluated according to algorithm-specific criteria to

assess limitations on the implementation of the algorithm.

For example, a given target technology may cause regions

of the architecture to become I/O-bound, memory-bound,

operation-bound, power-constrained, or size-constrained.

Partitioning Trade – In Phase 3, candidate architectures

partition the tailored algorithm into the technologies taking

into account the strengths and weaknesses of the

technology and the algorithm’s requirements.

Final Architectural Selection – In Phase 4, the final phase

of the process, candidate architectures are analyzed using

the established, system-specific evaluation criteria to select

the final architecture and implementation technology.

This process can be used with any algorithm. This paper

will examine its use in implementing a digital

beamforming algorithm using various target technologies.

Digital Beamforming
Digital beamforming (Figure 2) forms one or more beams

from sub-apertures of an antenna. In the figure the

incoming wavefront is received by each of the channels of

the antenna, down-converted, and A/D sampled. Digital

beamfoming uses time delays and/or frequency-specific

phase shifts to steer the input channels so that each senses

the same frequency and phase of the wavefront.

Complex
Weight

Summation

Beam Output

Complex
Weight

Complex
Weight

Complex
Weight

Subaperture
Phase
Centers

Wavefront

Boresight

Desired time
delays to achieve
a constant phase

front

A/D A/D A/D A/D

Sample
DelaySubband

Sample

DelaySubband
Sample
DelaySubband

Sample

DelaySubband

Complex
Weight

Summation

Complex
Weight

Complex
Weight

Complex
Weight

Boresight

Desired time
delays to achieve
a constant phase

front

A/D A/D A/D A/D

Digital
Beamformer
Functions

Digital
Beamformer
Functions

Time
Delay

Time
Delay

Time
Delay

Time
Delay

Down-

converter
Down-

converter
Down-

converter
Down-

converter

θ

θ

Figure 2: Notional digital beamforming architecture.

Key parameters for digital beamforming architectures are:

input channels and sample rates, output beams and data

bandwidth, as well as cost, size, weight, power, and

environmental requirements.

Hardware Implementation Options
Front end processing algorithms can be written in

hardware languages (VHDL, Verilog, etc.) or software

languages (such as C) and implemented in a variety of

hardware such as:

ASIC – Application Specific Integrated Circuits, custom

devices designed and fabricated for a specific application

FPGA – Field Programmable Gate Arrays,

reprogrammable commercial-off-the-shelf (COTS) devices

Multi-core processors – processors with multiple software-

programmable processing cores and an interconnect fabric

with interfaces to memory and other devices

GPU – Graphic Processing Units

Custom boards – fully custom printed circuit board (PCB)

designs

COTS FPGA boards – PCBs with standard FPGA devices

and standard external interfaces

This paper describes a number of digital beamforming

systems. Each system uses a hardware platform comprised

of the above components and offers a unique set of

capabilities and limitations (shown in Table 1).

 Custom:

ASIC,

Board

Custom:

FPGA,

Board

COTS:

FPGA

Board

COTS:

Processor

Board

I/O Flexibility Highest High Medium Low

Capability Highest Medium Medium Low

Processing Efficiency Highest Medium Medium Lowest

Programmability None Medium Medium High

Complexity High Medium Medium Low

NRE Cost Highest Medium Low Lowest

Power Lowest High High Medium

Table 1: Hardware Platform Capabilities and Limitations

The following examples show how the development

process enables portability in the implementation of digital

front end processing algorithms across a diverse set of

hardware platforms and system requirements.

Example – FPGA and Custom Board
This platform was selected to achieve a balance between

capability, flexibility, and cost.

 System Requirements: Process 18 channels of sub-

banded data to form 4 output beams.

 Algorithm Requirements: 138 Giga-Operations/sec

 Establish the Trade Space: System environmental and

cost requirements restrict the trade space to radiation-

tolerant FPGAs.

 Algorithm Data-Dependencies: None exists between

subbands, but a significant data-dependency between

output beams.

 Candidate Architectures: The optimal architecture

minimizes the number of devices used to process the

output beams for a given subband and increases the

number of subbands processed in a given device until

one of the resources of that is consumed.

The architecture in Figure 3 shows the result of the

partitioning trade. It minimizes the number of FPGAs

required by maximizing the resource utilization of each

FPGA within the I/O constraints of the FPGA technology.

All output beam processing for a given subband is

performed in the same FPGA – giving priority to the data

dependency between beams.

Beamformer 1

FPGA

(Subbands 0 - 5)

18 Channels, 6 Sub-bands

Beam

A

Beam

B

Beam

C

Beam

D

Beamformer 2

FPGA

(Subbands 6 - 11)

18 Channels, 6 Sub-bands

Beam

A

Beam

B

Beam

C

Beam

D

Beamformer 3

FPGA

(Subbands 12 - 17)

18 Channels, 6 Sub-bands

Beam

A

Beam

B

Beam

C

Beam

D

Beamformer 4

FPGA

(Subbands 18 - 23)

18 Channels, 6 Sub-bands

Beam

A

Beam

B

Beam

C

Beam

D

Figure 3: Block diagram of FPGA and custom board.

Full Custom – ASICs and Custom Board
This form factor was selected to minimize power. Figure 4

(on the left) shows a full custom implementation of a

digital beamformer for space applications. This

cascadable beamformer board receives four input channels

with sample rates of 480 MHz and produces 4 beams in

each of the 24 subbands.

Figure 4: Full custom digital beamformer with ASICs and

COTS modular processor beamformer.

COTS Modular Processor Architecture
Figure 4 (on the right) shows an example of digital

beamforming implemented in an open system architecture

using highly modular programmable COTS hardware. The

processor receives 80 A/D input channels and forms 30

independent beams. This scalable architecture consists of

five modules, each containing four FPGAs. High-speed

fiber optic links between modules create a well-connected

regular, modular, scalable architecture.

COTS & Advanced Processor Architectures
The same techniques for front-end processing algorithm

implementations can be applied to COTS processor

elements and architectures – legacy CPUs, multi-core

processors, GPUs, or advanced processor architectures.

The algorithm can be divided between these processing

elements and other hardware such as FPGAs or ASICs.

The algorithms are portable – allowing an open trade space

at the beginning of the algorithm development process.

Conclusion
Front end processing algorithm must be portable across a

variety of hardware platforms. The platforms include full

custom hardware that maximizes performance/power

ratios, reprogrammable devices that provide real-time

hardware execution of front end processing algorithms, or

software solutions on advanced processors. A design

process that adapts algorithms to different requirements

allows portability of digital processing algorithms across

systems.

