NORTHROP GRUMMAN

Implementation of Digital Front End Processing Algorithms with Portability Across Multiple Processing Platforms

High Performance Embedded Computing (HPEC) Workshop 2011

September 20-21, 2011

John Holland, Jeremy W. Horner, Randy Kuning, David B. Oeffinger

Northrop Grumman Corporation P.O. Box 1693 Baltimore, Maryland 21203 John.Holland@ngc.com

Copyright 2011 Northrop Grumman Corporation. All Rights Reserved.

A Process for Implementing Algorithms Across Hardware Platforms

2) Establish Trade Space

Critical system requirements Limitations on implementation 4) Final Architectural Selection

Can use this process with any algorithm and implementation

Copyright 2011 Northrop Grumman Corporation. All Rights Reserved.

Example: Digital Beamforming

- Digital Beamforming
 - Architecture elements: time delays, phase shifts, synchronization
 - Key Parameters: number of channels, number of beams, signal bandwidth, data bandwidth
- Hardware Implementation Options
 - Devices: ASIC, FPGA, multi-core processors, GPUs
 - Boards:
 - COTS
 - Custom

Hardware Platform Capabilities and Limitations

Medium

Medium

Low

High

High

Low

Lowest

Medium

Each implementation option offers a unique set of capabilities and limitations

None

High

Highest

Lowest

Medium

Medium

Medium

High

I/O Flexibility

Processing Efficiency

Programmability

Capability

Complexity

NRE Cost

Power

Copyright 2011 Northrop Grumman Corporation. All Rights Reserved.

Example Architecture: FPGAs on a Custom Board

NORTHROP GRUMMAN

- System Requirements
 - Process multiple channels
- Algorithm Requirements
 - Over 100 Giga-operations/second
- Trade Space Restrictions
 - Radiation-tolerant FPGAs

- Data Dependencies
 - None between sub-bands
 - Significant dependencies between beams
- Candidate Architectures
 - Minimize number of devices
 - Increase number of subbands in a given device

Architecture achieves a balance between capability, flexibility, and cost

- COTS Modular Processor
 - Open system architecture using off-the-shelf hardware.
- COTS and Advanced Processors
 - Highly programmable

Copyright 2011 Northrop Grumman Corporation. All Rights Reserved.

An adaptable design process allows algorithm portability across platforms

Results: Beamforming Architectures for Land, Air, Sea, and Space

- Full Custom ASICs and Custom Board
 - Minimizes power, maximizes performance
- FPGA and Custom Board
 - Minimizes the number of FPGAs
 - Maximizes resource use

Full Custom Digital Beamformer

COTS Modular Processor Beamformer

