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Abstract 
Although a graphics processing unit (GPU) is a specialized 

device tailored primarily for compute-intensive, highly data-

parallel computations; significant acceleration can be 

achieved on memory-intensive graph algorithms as well. In 

this work, we investigate the performance of a graph 

algorithm for computing vertex betweenness centrality for 

small world networks on 2 NVIDIA Tesla and Fermi GPUs 

and compare it to a parallel open source implementation on 

an Intel multicore CPU. For the test instances considered 

the betweenness computation on GPU was accelerated by as 

much as 19.68× compared to single thread CPU 

performance and more than 2× compared to multithread 

CPU performance using 16 OpenMP threads. 

Introduction 
Network analysis is an active area of research with 

applications in variety of domains such as social networks, 

protein interaction networks, computer security and disease 

spread. These real-world networks though highly unrelated 

display common features such as a small diameter, power 

law degree distribution and community structure, or in other 

words a small world topology. They are often very large in 

size with number of vertices and edges varying from 

millions to billions. These graphs are sparse and their 

analysis tends to be highly memory intensive. They have a 

large memory footprint, and a significant number of non-

contiguous memory accesses to global data structures with 

low degree of spatial and temporal locality. Compared to 

other workloads most graph algorithms have little 

computation to hide latency to memory access. 

Betweenness centrality is a key metric that is used to identify 

important actors in a network. It is a popular graph analysis 

technique based on shortest path enumeration. For a 

graph        with   vertices and   edges, the betweenness 

centrality of vertex     is defined as,  
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where     denote the number of shortest paths between   and 

 , and        denotes the number of shortest paths that pass 

through a specified vertex  . Let        denote the pairwise 

dependency, or the fraction of shortest paths between   and   

that pass through   , i.e.        
      

   
 . Then, the 

expression for betweenness centrality can be written 

as,                    . 

The NVIDIA C1060 (Tesla) graphics processor consists of 

30 multiprocessors, each with 8 streaming processors (SM). 

The multiprocessor manages threads in groups of 32 parallel 

threads called warps. Each instruction is fetched and 

executed in parallel by the 8 SMs over 4 cycles for 32 data 

elements. The multiprocessors share an off-chip global 

memory. Accesses to global memory are not cached; hence 

it is important to realize coalesced memory access for good 

performance.  Each multiprocessor has a software managed 

fast shared local buffer of 16 KB. The NVIDIA CUDA 

parallel programming model provides an abstraction of 

threads into a top level collection called grid and the grid is 

composed of multiple thread blocks. 

Computing Betweenness 
Traditional approach to compute betweenness centrality is to 

first calculate number and length of shortest paths between 

all pairs of vertices   and   , followed by pairwise 

dependency accumulation for each vertex   to obtain the 

betweenness centrality score. Using Floyd-Warshall 

algorithm for all-pairs shortest-paths problem augmented 

with path counting, results in an       algorithm that 

requires       space. 

Brandes [3] presented a faster algorithm to exploit the sparse 

nature of small world networks that computes the 

betweenness centrality score for all vertices in       time 

for unweighted graphs and requires        space. Let 

      be the dependency of source vertex   on vertex   

defined as,                  . The betweenness 

centrality of a vertex   can be then expressed as       
            . Brandes showed that       satisfies the 

following recursive relation, 
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where        denotes the length of shortest path to   from 

source vertex  . The sequential algorithm computes 

betweenness in two stages as follows, 

For each source vertex     , 

1. Perform augmented breadth-first traversal starting from 

source   to compute the length and number of shortest 

paths. 

2. Revisit vertices starting from the farthest vertex from   

and accumulate dependencies according to Eq. 2 to 

compute                    

Parallelization 
The first parallel algorithm and implementation for 

computing betweenness was given by Bader and Madduri in 

[1]. This targeted a massively multithreaded supercomputer, 

the Cray XMT. In [4], they presented a faster lock-free 

algorithm using successor multi-sets. Here we adapt this 

lock-free algorithm for GPU and evaluate its performance. 

The betweenness centrality algorithm exhibits parallelism at 

three levels of granularity. At the coarse grain level, all the 

iterations from each source vertex   can be performed in 

parallel. Medium grain parallelism can be exploited by 



processing in parallel all vertices that are in the same frontier 

i.e. equidistant from the source vertex. Further, one can 

choose to exploit fine grain parallelism by processing the 

neighbors of each vertex in parallel. 

Coarse grained parallelism is limited by the amount of 

memory since multiple copies of data structures are required. 

Further, the centrality sum has to be updated atomically or 

accumulated via global reduction. 

Since GPU offers a large number of threads and CUDA 

abstracts them into a hierarchy of threads grouped into grid 

and blocks, we chose to exploit parallelism at the medium 

and fine grain level by distributing vertices in the same 

frontier to different blocks in a grid. Each thread block then 

processes in parallel the neighbors of vertices assigned to it. 

During the dependency accumulation stage, vertices from 

each frontier starting from the farthest are processed in 

parallel by each thread according to Eq. 2.  

Experimental Setup 
The experiments were carried out on a number of synthetic 

unweighted – directed R-MAT graphs generated using the 

synthetic graph generator in SNAP [2]. More details on these 

graphs can be found in Table 1. 

Graph #Vertices #Edges 
Degree 

Avg.   Max. 

#Connected 

Components 

syn1.gr 262,144 2,097,152 8 4,588 53,888 

syn2.gr 524,288 4,194,304 8 4,063 115,376 

syn3.gr 1,048,576 8,388,608 8 5,421 247,339 

syn4.gr 1,000,000 10,000,000 10 10,030 536,229 

syn5.gr 1,000,000 10,000,000 10 1,090 475,952 

Table 1: R-MAT graphs used for the experiment 

The GPUs used are an NVIDIA C1060 (Tesla) with a clock 

rate of 1.3 GHz, 30 × 8 cores, NVIDIA M2070 (Fermi), 

with a clock rate of 1.15 GHz, 14 × 32 cores. The multicore 

CPU has 2 quad-core Intel Xeon E5530 processors, with a 

clock rate of 2.4 GHz, hyper-threading enabled. The GPU 

implementation was compared to the open source OpenMP 

parallelized CPU implementation in SNAP. The computation 

was carried out for a subset of all-pairs shortest paths by 

using 500 source vertices. 

Performance Evaluation and Optimizations 
The runtime is dominated by the augmented breadth-first 

traversal stage. This stage does a considerable number of 

atomic updates to global data structures. Atomic operations 

on global memory are slow. Using fast shared memory for 

buffering writes to global memory helps realize coalescing 

and reduces number of atomic operations performed on the 

global data structures. For the test instances considered, the 

performance was improved by as much as 3× on GPUs with 

no cache (Tesla). 

Due to power law degree distribution in small world 

networks, they often do not result in a balanced load 

partitioning among processing elements. Pre-processing the 

frontier for balanced load by distributing edges instead of 

vertices during the augmented breadth-first traversal 

improved the performance significantly. The adjacencies of 

each vertex in the frontier are split into warp sized chunks. 

The resulting chunks are then evenly distributed among the 

warps. Breadth-first traversals are performed a number of 

times, each starting from a different source vertex. It would 

be better to pre-process the graph just once to start with. 

During the second stage of algorithm, assigning a warp 

instead of a thread per vertex to accumulate dependencies 

exploits the fine grain parallelism and provides a 

performance gain of up to      by improving load balance. 

Since a large number of vertices in a small world network 

have a low degree, there may not be enough work assigned 

per warp. Hence, we virtualized warp size to experiment 

with sizes of        and   . 

Graph CPU Time (s) 
             

GPU Time (s) 

Tesla      Fermi 
Speed up on Fermi 
                  

syn1.gr 24.19 5.47 5.65 2.64 9.16 2.07 

syn2.gr 80.72 15.78 13.48 6.33 12.75 2.49 

syn3.gr 184.11 32.68 23.31 11.31 16.28 2.89 

syn4.gr 93.63 17.35 13.77 6.11 15.32 2.84 

syn5.gr 232.79 33.87 19.98 11.83 19.68 2.86 

Table 2: GPU performance for betweenness compared to Intel 

Xeon with number of threads             (hyper-threading 

enabled). 

Table 2 summarizes the performance achieved on the 

manycore GPUs and the multicore CPU. The betweeness 

computation on Tesla is accelerated up to 11.65× compared 

to single thread CPU performance and 1.70× when 

compared to 16 threads (hyper-threading enabled). Though 

the GPU code was optimized for the Tesla architecture, 

running it as is on the Fermi GPU provided an out of the box 

performance gain of about 2× over Tesla. Compared to 

single thread performance and the best performance on Intel 

Xeon processor using 16 threads (hyper-threading enabled), 

the Fermi GPU performed up to 19.68× and 2.89× faster 

respectively. 
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