
Computing Betweenness Centrality for Small World Networks on a GPU
Pushkar R. Pande David A. Bader

pushkar.pande@gatech.edu bader@cc.gatech.edu

Georgia Institute of Technology

Atlanta, GA, 30332, USA

Abstract
Although a graphics processing unit (GPU) is a specialized

device tailored primarily for compute-intensive, highly data-

parallel computations; significant acceleration can be

achieved on memory-intensive graph algorithms as well. In

this work, we investigate the performance of a graph

algorithm for computing vertex betweenness centrality for

small world networks on 2 NVIDIA Tesla and Fermi GPUs

and compare it to a parallel open source implementation on

an Intel multicore CPU. For the test instances considered

the betweenness computation on GPU was accelerated by as

much as 19.68× compared to single thread CPU

performance and more than 2× compared to multithread

CPU performance using 16 OpenMP threads.

Introduction
Network analysis is an active area of research with

applications in variety of domains such as social networks,

protein interaction networks, computer security and disease

spread. These real-world networks though highly unrelated

display common features such as a small diameter, power

law degree distribution and community structure, or in other

words a small world topology. They are often very large in

size with number of vertices and edges varying from

millions to billions. These graphs are sparse and their

analysis tends to be highly memory intensive. They have a

large memory footprint, and a significant number of non-

contiguous memory accesses to global data structures with

low degree of spatial and temporal locality. Compared to

other workloads most graph algorithms have little

computation to hide latency to memory access.

Betweenness centrality is a key metric that is used to identify

important actors in a network. It is a popular graph analysis

technique based on shortest path enumeration. For a

graph with vertices and edges, the betweenness

centrality of vertex is defined as,

 (1)

where denote the number of shortest paths between and

 , and denotes the number of shortest paths that pass

through a specified vertex . Let denote the pairwise

dependency, or the fraction of shortest paths between and

that pass through , i.e.

 . Then, the

expression for betweenness centrality can be written

as, .

The NVIDIA C1060 (Tesla) graphics processor consists of

30 multiprocessors, each with 8 streaming processors (SM).

The multiprocessor manages threads in groups of 32 parallel

threads called warps. Each instruction is fetched and

executed in parallel by the 8 SMs over 4 cycles for 32 data

elements. The multiprocessors share an off-chip global

memory. Accesses to global memory are not cached; hence

it is important to realize coalesced memory access for good

performance. Each multiprocessor has a software managed

fast shared local buffer of 16 KB. The NVIDIA CUDA

parallel programming model provides an abstraction of

threads into a top level collection called grid and the grid is

composed of multiple thread blocks.

Computing Betweenness
Traditional approach to compute betweenness centrality is to

first calculate number and length of shortest paths between

all pairs of vertices and , followed by pairwise

dependency accumulation for each vertex to obtain the

betweenness centrality score. Using Floyd-Warshall

algorithm for all-pairs shortest-paths problem augmented

with path counting, results in an algorithm that

requires space.

Brandes [3] presented a faster algorithm to exploit the sparse

nature of small world networks that computes the

betweenness centrality score for all vertices in time

for unweighted graphs and requires space. Let

 be the dependency of source vertex on vertex

defined as, . The betweenness

centrality of a vertex can be then expressed as
 . Brandes showed that satisfies the

following recursive relation,

 (2)

where denotes the length of shortest path to from

source vertex . The sequential algorithm computes

betweenness in two stages as follows,

For each source vertex ,

1. Perform augmented breadth-first traversal starting from

source to compute the length and number of shortest

paths.

2. Revisit vertices starting from the farthest vertex from

and accumulate dependencies according to Eq. 2 to

compute

Parallelization
The first parallel algorithm and implementation for

computing betweenness was given by Bader and Madduri in

[1]. This targeted a massively multithreaded supercomputer,

the Cray XMT. In [4], they presented a faster lock-free

algorithm using successor multi-sets. Here we adapt this

lock-free algorithm for GPU and evaluate its performance.

The betweenness centrality algorithm exhibits parallelism at

three levels of granularity. At the coarse grain level, all the

iterations from each source vertex can be performed in

parallel. Medium grain parallelism can be exploited by

processing in parallel all vertices that are in the same frontier

i.e. equidistant from the source vertex. Further, one can

choose to exploit fine grain parallelism by processing the

neighbors of each vertex in parallel.

Coarse grained parallelism is limited by the amount of

memory since multiple copies of data structures are required.

Further, the centrality sum has to be updated atomically or

accumulated via global reduction.

Since GPU offers a large number of threads and CUDA

abstracts them into a hierarchy of threads grouped into grid

and blocks, we chose to exploit parallelism at the medium

and fine grain level by distributing vertices in the same

frontier to different blocks in a grid. Each thread block then

processes in parallel the neighbors of vertices assigned to it.

During the dependency accumulation stage, vertices from

each frontier starting from the farthest are processed in

parallel by each thread according to Eq. 2.

Experimental Setup
The experiments were carried out on a number of synthetic

unweighted – directed R-MAT graphs generated using the

synthetic graph generator in SNAP [2]. More details on these

graphs can be found in Table 1.

Graph #Vertices #Edges
Degree

Avg. Max.

#Connected

Components

syn1.gr 262,144 2,097,152 8 4,588 53,888

syn2.gr 524,288 4,194,304 8 4,063 115,376

syn3.gr 1,048,576 8,388,608 8 5,421 247,339

syn4.gr 1,000,000 10,000,000 10 10,030 536,229

syn5.gr 1,000,000 10,000,000 10 1,090 475,952

Table 1: R-MAT graphs used for the experiment

The GPUs used are an NVIDIA C1060 (Tesla) with a clock

rate of 1.3 GHz, 30 × 8 cores, NVIDIA M2070 (Fermi),

with a clock rate of 1.15 GHz, 14 × 32 cores. The multicore

CPU has 2 quad-core Intel Xeon E5530 processors, with a

clock rate of 2.4 GHz, hyper-threading enabled. The GPU

implementation was compared to the open source OpenMP

parallelized CPU implementation in SNAP. The computation

was carried out for a subset of all-pairs shortest paths by

using 500 source vertices.

Performance Evaluation and Optimizations
The runtime is dominated by the augmented breadth-first

traversal stage. This stage does a considerable number of

atomic updates to global data structures. Atomic operations

on global memory are slow. Using fast shared memory for

buffering writes to global memory helps realize coalescing

and reduces number of atomic operations performed on the

global data structures. For the test instances considered, the

performance was improved by as much as 3× on GPUs with

no cache (Tesla).

Due to power law degree distribution in small world

networks, they often do not result in a balanced load

partitioning among processing elements. Pre-processing the

frontier for balanced load by distributing edges instead of

vertices during the augmented breadth-first traversal

improved the performance significantly. The adjacencies of

each vertex in the frontier are split into warp sized chunks.

The resulting chunks are then evenly distributed among the

warps. Breadth-first traversals are performed a number of

times, each starting from a different source vertex. It would

be better to pre-process the graph just once to start with.

During the second stage of algorithm, assigning a warp

instead of a thread per vertex to accumulate dependencies

exploits the fine grain parallelism and provides a

performance gain of up to by improving load balance.

Since a large number of vertices in a small world network

have a low degree, there may not be enough work assigned

per warp. Hence, we virtualized warp size to experiment

with sizes of and .

Graph CPU Time (s)

GPU Time (s)

Tesla Fermi
Speed up on Fermi

syn1.gr 24.19 5.47 5.65 2.64 9.16 2.07

syn2.gr 80.72 15.78 13.48 6.33 12.75 2.49

syn3.gr 184.11 32.68 23.31 11.31 16.28 2.89

syn4.gr 93.63 17.35 13.77 6.11 15.32 2.84

syn5.gr 232.79 33.87 19.98 11.83 19.68 2.86

Table 2: GPU performance for betweenness compared to Intel

Xeon with number of threads (hyper-threading

enabled).

Table 2 summarizes the performance achieved on the

manycore GPUs and the multicore CPU. The betweeness

computation on Tesla is accelerated up to 11.65× compared

to single thread CPU performance and 1.70× when

compared to 16 threads (hyper-threading enabled). Though

the GPU code was optimized for the Tesla architecture,

running it as is on the Fermi GPU provided an out of the box

performance gain of about 2× over Tesla. Compared to

single thread performance and the best performance on Intel

Xeon processor using 16 threads (hyper-threading enabled),

the Fermi GPU performed up to 19.68× and 2.89× faster

respectively.

References
[1] D. A. Bader and K. Madduri, “Parallel algorithms for

evaluating centrality indices in real world networks”, The 35th

International Conference on Parallel Processing (ICPP),

2006.

[2] D. A. Bader and K. Madduri, “SNAP, Small-world Network

Analysis and Partitioning: an open-source parallel graph

framework for the exploration of large-scale networks.” The

22nd IEEE International Parallel and Distributed Processing

Symposium (IPDPS), 2008.

[3] U. Brandes, “A faster algorithm for betweenness centrality,”

The Journal of mathematical sociology, vol. 25, no. 2, pp.

163-177, 2001.

[4] Kamesh Madduri, David Ediger, Karl Jiang, David A. Bader,

and Daniel Chavarria-Miranda, “A Faster Parallel Algorithm

and Efficient Multithreaded Implementation for Evaluating

Betweenness Centrality on Massive Datasets”, in Proc. 3rd

Workshop on Multithreaded Architectures and Applications

(MTAAP'09), Rome, Italy, May 2009.

