
MIT Lincoln Laboratory
HPEC11-1

GT 9/21/2011

Computing Betweenness Centrality for
Small World Networks on a GPU

Pushkar R. Pande
Georgia Institute of Technology

David A. Bader
Georgia Institute of Technology

MIT Lincoln Laboratory
HPEC11-2

GT 9/21/2011

Introduction

• Betweenness Centrality of a vertex is defined as,

 : Number of shortest paths between vertices and
 : Number of shortest paths between vertices and through

• For a graph with 1 million vertices and 10 million edges,
betweenness computation on GPU is accelerated by ~20
compared to single thread CPU performance.

• Our algorithm for computing betweenness is based on the
sequential algorithm [Brandes 2001],

For each source vertex, perform:
1. Breadth-First traversal for enumerating shortest paths.
2. Accumulate dependencies by back propagation.

• Bader and Madduri (ICPP 2006) gave the first parallel
implementation. This targeted the highly multithreaded
supercomputer, the Cray XMT.

MIT Lincoln Laboratory
HPEC11-3

GT 9/21/2011

Our GPU Implementation
using CUDA

… …

…

…

… … …

…

CUDA thread blocks

CUDA warps per thread block

• CUDA offers a hierarchy of threads that allows
for multi-level parallelism

• Vertices of frontier are
distributed among CUDA thread blocks.

• Adjacencies of the corresponding
frontier chunk are then distributed to warps
per thread block.

– Number of thread
blocks

– Block size

– Warp size

MIT Lincoln Laboratory
HPEC11-4

GT 9/21/2011

Performance and Optimizations

• Performance is improved by,
– Using fast shared memory for buffering writes to global memory.

 Coalesces global memory access
 Reduces number of atomic operations on global data structures.

– Frontier pre-processing for balanced load.
– Accumulating dependencies by assigning a warp per vertex.
– Improved work assignment per warp using virtualized warp size.

• GPU performance for betweenness compared to CPU with
number of threads for a subset of 500 source vertices,

GPU: NVIDIA C1060 (Tesla), 1.3 GHz, 30 8 cores
 NVIDIA M2070 (Fermi), 1.15 GHz, 14 32 cores
CPU: 2 quad-core Intel Xeon E5530, 2.4 GHz, hyper-threading enabled

Graph #Vertices #Edges CPU Time (s)

GPU Time (s)
Tesla Fermi

Speed up on Fermi

syn1.gr 262,144 2,097,152 24.19 5.47 5.65 2.64 9.16 2.07
syn2.gr 524,288 4,194,304 80.72 15.78 13.48 6.33 12.75 2.49
syn3.gr 1,048,576 8,388,608 184.11 32.68 23.31 11.31 16.28 2.89
syn4.gr 1,000,000 10,000,000 93.63 17.35 13.77 6.11 15.32 2.84
syn5.gr 1,000,000 10,000,000 232.79 33.87 19.98 11.83 19.68 2.86

	Computing Betweenness Centrality for Small World Networks on a GPU
	Introduction
	Our GPU Implementation �using CUDA
	Performance and Optimizations

