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* Betweenness Centrality of a vertex v is defined as,
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Tst : Number of shortest paths between vertices sand ¢
051;(’0) : Number of shortest paths between vertices s and ¢ through v

* For agraph with 1 million vertices and 10 million edges,
betweenness computation on GPU is accelerated by ~20X
compared to single thread CPU performance.

* Qur algorithm for computing betweenness is based on the
sequential algorithm [Brandes 2001],

For each source vertex, perform:
1. Breadth-First traversal for enumerating shortest paths.
2. Accumulate dependencies by back propagation.

e Bader and Madduri (ICPP 2006) gave the first parallel
Implementation. This targeted the highly multithreaded
supercomputer, the Cray XMT.
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N\ NB — Number of thread
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CUDA warps per thread block

HPEC11-3
GT 9/21/2011

e Vertices {v1. vz, ....v, } of iy, frontier are
distributed among N B CUDA thread blocks.
 Adjacencies {wy,ws, ..., ws} of the corresponding
frontier chunk are then distributed to % warps

per thread block.
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* Performance is improved by,

— Using fast shared memory for buffering writes to global memory.
Coalesces global memory access
Reduces number of atomic operations on global data structures.

— Frontier pre-processing for balanced load.
— Accumulating dependencies by assigning a warp per vertex.
— Improved work assignment per warp using virtualized warp size.

* GPU performance for betweenness compared to CPU with
number of threads nt = {1, 16}for a subset of 500 source vertices,

: CPU Time (s) | GPU Time (s) | Speed up on Fermi
Graph | #Vertices | #Edges nt=1 nt=16|Tesla Fermi| nt=1 nt=16
synl.gr 262,144 | 2,097,152 24.19 5.47 5.65 2.64 9.16 2.07
syn2.gr 524,288 | 4,194,304 80.72 15.78| 13.48 6.33 12.75 2.49
syn3.gr | 1,048,576 | 8,388,608 | 184.11 32.68| 23.31 11.31 16.28 2.89
syn4.gr | 1,000,000 | 10,000,000 93.63 17.35| 13.77 6.11 15.32 2.84
syn5.gr | 1,000,000 | 10,000,000 | 232.79 33.87| 19.98 11.83 19.68 2.86

GPU: NVIDIA C1060 (Tesla), 1.3 GHz, 30 X8 cores
NVIDIA M2070 (Fermi), 1.15 GHz, 14 X 32 cores
CPU: 2 quad-core Intel Xeon E5530, 2.4 GHz, hyper-threading enabled
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