Georgia College off
Tg%h @@ﬁﬂfgu?{m@ @

Computing Betweenness Centrality for
Small World Networks on a GPU

Pushkar R. Pande David A. Bader

Georgia Institute of Technology Georgia Institute of Technology

MIT Lincoln Laboratory <=

HPEC11-1
GT 9/21/2011

S
K&

Introduction Gegrgia collepect @

R
KK

* Betweenness Centrality of a vertex v is defined as,

Bow) = 3 2

O
SHvF#t st
Tst : Number of shortest paths between vertices sand ¢
051;(’0) : Number of shortest paths between vertices s and ¢ through v

* For agraph with 1 million vertices and 10 million edges,
betweenness computation on GPU is accelerated by ~20X
compared to single thread CPU performance.

* Qur algorithm for computing betweenness is based on the
sequential algorithm [Brandes 2001],

For each source vertex, perform:
1. Breadth-First traversal for enumerating shortest paths.
2. Accumulate dependencies by back propagation.

e Bader and Madduri (ICPP 2006) gave the first parallel
Implementation. This targeted the highly multithreaded
supercomputer, the Cray XMT.

MIT Lincoln Laboratory <=

HPEC11-2
GT 9/21/2011

= Our GPU Implementation Georpia | Golegeot 2B
% . Tech GComputing
using CUDA -
N\ NB — Number of thread
blocks
Blockq Block, Blockn g)
B — Block size
\L'l \ (\Z\UI\Z)A thread blocks "/ W — Warp size
A(.ljza,c(_-.uci'és of frontier chunk {L1a";\,zﬁ} ¢ CU DA OfferS a hlerarChy Of threadS that alIOWS
for multi-level parallelism

"\'

[Warpg

Warm

Warp &

CUDA warps per thread block

HPEC11-3
GT 9/21/2011

e Vertices {v1. vz,v, } of iy, frontier are
distributed among N B CUDA thread blocks.
 Adjacencies {wy,ws, ..., ws} of the corresponding
frontier chunk are then distributed to % warps

per thread block.

MIT Lincoln Laboratory <=

3
3

& Performance and Optimizations cegsia cisesct @

Tech GComputing

o'o'
!‘.

* Performance is improved by,

— Using fast shared memory for buffering writes to global memory.
Coalesces global memory access
Reduces number of atomic operations on global data structures.

— Frontier pre-processing for balanced load.
— Accumulating dependencies by assigning a warp per vertex.
— Improved work assignment per warp using virtualized warp size.

* GPU performance for betweenness compared to CPU with
number of threads nt = {1, 16}for a subset of 500 source vertices,

: CPU Time (s) | GPU Time (s) | Speed up on Fermi
Graph | #Vertices | #Edges nt=1 nt=16|Tesla Fermi| nt=1 nt=16
synl.gr 262,144 | 2,097,152 24.19 5.47 5.65 2.64 9.16 2.07
syn2.gr 524,288 | 4,194,304 80.72 15.78| 13.48 6.33 12.75 2.49
syn3.gr | 1,048,576 | 8,388,608 | 184.11 32.68| 23.31 11.31 16.28 2.89
syn4.gr | 1,000,000 | 10,000,000 93.63 17.35| 13.77 6.11 15.32 2.84
syn5.gr | 1,000,000 | 10,000,000 | 232.79 33.87| 19.98 11.83 19.68 2.86

GPU: NVIDIA C1060 (Tesla), 1.3 GHz, 30 X8 cores
NVIDIA M2070 (Fermi), 1.15 GHz, 14 X 32 cores
CPU: 2 quad-core Intel Xeon E5530, 2.4 GHz, hyper-threading enabled

HPEC11-4
GT 9/21/2011

MIT Lincoln Laboratory <=

	Computing Betweenness Centrality for Small World Networks on a GPU
	Introduction
	Our GPU Implementation �using CUDA
	Performance and Optimizations

