
Application Level Optimizations for
Energy Efficiency and Thermal Stability

Md. Ashfaquzzaman Khan Can Hankendi Ayse Kivilcim Coskun Martin C. Herbordt

Department of Electrical and Computer Engineering
Boston University; Boston, MA 02215

Abstract: As part of our Green Software project we investigate whether
application-level software optimization can improve energy efficiency
and thermal behavior. We use both direct measurements and mod-
eling to quantify power, energy, and temperature for a given soft-
ware method. We introduce a new power estimator for multicore sys-
tems developed by regressing measurements from a suite of custom-
designed microbenchmarks. We use our evaluation methodology on
a real-life multicore system to explore two issues: (i) software tun-
ing to improve scalability and energy-efficiency, and (ii) the effect of
temperature optimization on system-level energy consumption.

1. INTRODUCTION
Recent studies show that the total cost of a server will be primarily a
function of the power it consumes [2]. A closely related issue is ther-
mal management: High power consumption not only increases opera-
tional energy costs, but also causes high temperatures and thus dramat-
ically raises cooling costs. Considering the complexity of large scale
computing infrastructure, it is not cost-efficient to address the pressing
challenges—Performance, Energy, and Temperature (PET)—solely
through novel hardware design. We know that workload has a signif-
icant effect on all three metrics, but also that their complex interplay
makes their joint optimization a major challenge. For examples, reduc-
ing the energy per computation often requires non-obvious software
restructuring or the introduction of non-intuitive “extra” computations.
Also, a method optimizing energy efficiency by clustering the work-
load in a few resources, temporally or spatially, can harm the thermal
profile by creating hot spots on the active resources.

Our hypothesis is that optimizing for PET is different from opti-
mizing for PE or PT only; and that considering all three parameters is
necessary to improve energy efficiency while maintaining high perfor-
mance and reliability. As a part of this larger hypothesis, we investigate
whether software optimization at the application level can help achieve
higher energy efficiency and better thermal behavior.

2. METHODS
A fundamental component in this research is to quantify the values

of P, E, and T for a given software execution method. Our target sys-
tem is a high-end 1U server with a 12-core AMD Magny-Cours chip.
We follow two directions: direct measurement and modeling. While
direct measurement is essential for verification, modeling is needed for
higher observability into the system parameters.

2.1 PET Measurements
Most modern CPUs provide performance counters that can be used

to measure events such as number of retired instructions, cache misses,
and many others. We use these to measure detailed performance char-
acteristics and to predict per-core power consumption. We also collect
measurements for both system and chip level power consumption. For
chip level, we identify the 12V input wires to the voltage regulator
and use a Hall-ect clamp ammeter (Agilent 34134A) to measure the
current flow. For system level power consumption, we use a Watts
up? PROes meter. For temperature measurements, we poll the tem-
perature sensor on the Northbridge bus using the lm sensors hardware
monitoring tool.

2.2 Power Estimation
The power and thermal measurements collected from the chip are

not sufficiently fine-grained to determine per-core power and tempera-
ture, which are necessary to create a thermal profile appropriate for dy-
namically managing PET. To build a model to predict per-core power

0

2

4

6

8

-2

-3

ROI Error % (Avg.P)

All Error % (Avg.P)

E
rr

o
r

%

PARSEC Benchmarks

Blk
Sc
h

Figure 1: Power estimation model error.

consumption, we design a set of microbenchmarks. We collect per-
formance and power data, and then use linear regression to derive the
model. Our microbenchmarks are as follows.

• In-cache matrix multiplication (double) – MM
• In-cache matrix multiplication (short)
• Memory access without sharing
• Memory access with sharing
• Memory access with frequent synchronization – Spinlock
• In-cache matrix multiplication (short-simple)

Respectively, these exercise floating point units, integer units, mem-
ory, shared caches, data sharing, and branch predictors. We validate
our model using the PARSEC benchmark suite [1] running the native
input set. Figure 1 demonstrates the average estimation error for the
entire PARSEC suite.

2.3 Thermal Model
For thermal simulations, we use HotSpot-5.0 [3]. HotSpot requires

chip layout and power traces for each unit to calculate the transient
temperature response. We derive the dimensions of cores and L2-
caches from the layout provided by AMD. AMD Magny-cours consists
of two AMD Istanbul 6-core chips that reside side by side in the same
package. For constructing the thermal model, we focus on one of the
6-core chips since temperature behavior of each chip is mostly inde-
pendent from the other. Using our power estimation model, we gener-
ate the per-core power traces. Average power consumption per core
across the PARSEC benchmarks is 8.5W. For computing L2-cache
power traces, we utilize CACTI [4] and use a fixed L2-cache power
value of 1.5W. As caches have low temperature, using a fixed power
value has acceptable accuracy. All thermal simulations are initialized
with steady-state values to warm up the package and the chip.

3. CASE STUDIES
3.1 Code Optimization for Energy Efficiency

The purpose of the first case study is to illustrate the effect of code
restructuring on PET. For this we use dedup, a kernel that executes a
next-generation data compression method called “deduplication” [1].
The original kernel uses a pipelined programming model to parallelize
the compression. There are five stages, the middle three of which
are executed in parallel. Each stage uses a separate thread pool; each
thread pool has a number of threads equal to the number of available
cores to allow the system to fully work on any stage. The OS is re-
sponsible for thread scheduling. In order to avoid lock contention, the
number of queues is scaled with the number of threads, with a small
group of threads sharing an input and output queue.

The pipelined parallelization results in threads having widely vary-
ing workloads. This ultimately causes varying power consumption in
both time and space. Due to a lack of data reuse and increased need

for synchronization, performance and scaling also suffer. To optimize
dedup, we parallelize using a task-based scheme: the three parallel
stages are merged into a single thread. Each thread now takes one task
from the first stage and performs all computation of that task. Upon
completion, the result of the task is supplied to the final stage. As
before, the initial and final stages are performed in serial.

!

5

4

6

3

2

1

0
54321

Default
Task Decomposed

Number of Threads

S
ca

lin
g

Figure 2: Performance scaling: original and optimized.

This method reduces synchronization overhead since three paral-
lel stages are now merged into a single stage. It also increases data
reuse. And since all threads now perform similar tasks, the power con-
sumption and temperature profiles should be more uniform. Figure 2
shows the scaling result of the original and optimized versions: The
latter achieves stable scalability and outperforms the default version as
number of cores increases. We observe this trend up to 12-cores with
performance improvement of nearly 1.8×.

50 100 150 200 250 300 350 400

P
o

w
er

 (W
)

Sampling Interval (x40ms)

80

70

60

50

40

30

20

10

0

P
o

w
er

 (W
)

50 100 150 200 250 300 350 400
Sampling Interval (x40ms)

80

70

60

50

40

30

20

10

0

Figure 3: Total chip power consumption: original and optimized.
Figure 3 shows the total chip power consumption for the original and

optimized versions. Note that the power consumption varies widely in
the default version due to the load imbalance, while most of this is re-
moved in the optimized version. The drop in power at the end is due
to the end of available tasks. Figure 4 shows the results from the ther-
mal simulation. The optimized version has more stable temperature in
both time and space. Overall, the optimized model improves energy
efficiency with a 30% reduction in CPU energy and a 35% reduction
in system energy compared with the original version. Per core maxi-
mum temporal thermal variance is reduced by 56% and overall thermal
variance among the cores is reduced by 41%.

!
T
e

m
p

e
ra

tu
re

 (
C

)

50 100 150 200 250 300 350 400

Sampling Interval (x40ms)

56.5

56.0

55.5

55.0

57.0

57.5

58.0

58.5

59.0

59.5

60.0
CPU0

CPU1

CPU2

CPU3

CPU4

CPU5

!"

T
e

m
p

e
ra

tu
re

 (
C

)

50 100 150 200 250 300 350 400

56.5

56.0

55.5

55.0

57.0

57.5

58.0

58.5

59.0

59.5

60.0

CPU0

CPU1

CPU2

CPU3

CPU4

CPU5

Sampling Interval (x40ms)

Figure 4: Per-core temperature: original and optimized.

3.2 Effect of Temperature Optimization
To investigate the effects of temperature optimization, we first de-

rive the temperature time constant. In Figure 5, we show that optimiz-
ing temperature at a 100µs granularity has the potential for substantial
benefit in reducing temperature. This granularity can easily be target-
ted at the application software level.

We next experiment with the mPrime stress test and two of the
microbenchmarks (from Section 2), MM and Spinlock. Figure 6 shows
both chip and system level power consumption as well as temperature
sensor readings from the Northbridge bus. Our experiments show that
a 25oC ∆T translates into 10W ∆Chip-power and 17W ∆System-
power. This implies that optimizing temperature potentially reduces
chip power due to lower leakage power, and reduces system-power by
decreasing the cooling cost (fan power).

4 4.5

10 us

4 4.5 5

100 us

0 10 20

47

48

49

50

51

52

Te
m

p
e
ra

tu
re

 (
C

)

10 ms

5 10

1 ms

Time (ms)

(a) (b)
Figure 5: Transient thermal response of a core when it switches
between active and idle power states at various frequencies.

0

10

20

30

40

50

60

70

120

130

140

150

160

170

180

190

200

210

220

T
ut

ar
e

p
me

r
)

C(
eP

o
w

er
 (W

)

System Power
Chip Power
NB Temp.

100 200 300 400 500 600 700 800

Time (s)

Figure 6: Power consumption and temperature sensor readings
from Northbridge bus for mPrime stress test

Figure 7 shows actual chip and system power measurements and
peak core temperatures from HotSpot thermal simulations for MM
and spinlock. MM has the highest power consumption across all mi-
crobenchmarks, while spinlock has the lowest. At the chip level, the
difference is 10.8W , at the system-level 23.5W . After subtracting the
chip-level power difference, there is still a 12.7W system-level power
difference. Note that the system uses dynamic fan control by default.
The higher power consumption of MM increases the fan speed, ex-
plaining the major portion of the system level power difference. MM
also has a 3oC higher peak core temperature. These studies underline
the importance of temperature optimization and show potential for sys-
tem level energy savings.

MM (double) Spinlock Sync.
Chip Power
System Power
Peak Temperature
(per Core)
Delta System-
Chip
Delta Temp

73.7 62.9 10.8
140.8 117.3 23.5
56.59 53.55 3.04

53.55 53.55

0

37.5

75

112.5

150

Chip Power Peak Temperature (per Core)
0

30

60

90

120

Chart 1

MM (double) Spinlock Sync.

0

37.5

75

112.5

150

Chip Power System Power

117.3

62.9

140.8

73.7

P
ow

er
 (W

)

MM (double) Spinlock Sync.

50

52.5

55

57.5

60

Peak Temperature

53.55

56.59

T

Tem
p

erature (C
)

Figure 7: Comparing chip power, system power, and temperature.

4. CONCLUSIONS
We have presented initial results in the use of application-level soft-

ware optimization for performance, energy, and thermal distribution.
We believe that this approach fills an important gap in providing a
hardware-independent reduction in computing cost.

5. REFERENCES
[1] Bienia, C., Kumar, S., Singh, J. P., and Li, K. The parsec bench-

mark suite: Characterization and architectural implications. In
PACT (2008).

[2] Hoelzle, U., and Barroso, L. A. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines, 1st ed.
Morgan and Claypool Publishers, 2009.

[3] Skadron, K., Stan, M., Huang, W., Velusamy, S., Sankara-
narayanan, K., and Tarjan, D. Temperature-Aware Microarchitec-
ture. In ISCA (2003).

[4] Tarjan, D., Thoziyoor, S., and Jouppi, N. P. CACTI 4.0. Tech. Rep.
HPL-2006-86, HP Laboratories Palo Alto, 2006.

