Software Optimization for Performance, Energy, and Thermal Distribution: Initial Case Studies

Md. Ashfaquzzaman Khan, Can Hankendi,

Ayse Kivilcim Coskun, Martin C. Herbordt

{azkhan| hankendi | acoskun | herbordt}@bu.edu

Electrical and Computer Engineering

BOSTON UNIVERSITY

HPEC'11

09/21/2011

Funded by Dean's Catalyst Award, BU.

Motivation

Energy consumption by data centers increases by <u>15%</u> per year [Koomey 08].

Data Center Greenhouse Gas Emissions by Scenario, World Markets: 2009-2020

(BAU: Business as Usual) Source: Pike Research

Motivation

Energy consumption by data centers increases by <u>15%</u> per year [Koomey 08].

Data Center Greenhouse Gas Emissions by Scenario, World Markets: 2009-2020

GHG Emissions, Cloud Computing Scenario

GHG Emissions, BAU Scenario

140

130

Usual)

Holyoke Dam

Goal: Reduce energy consumption brough temperature-aware software optimization (BAU: Business as

Software to Reduce Power (basic)

- □ If cores are idle shut them off (Dynamic Power Management)
- If you have slack in the schedule, slow down (Dynamic Voltage/Frequency Scaling)

Temperature is also a concern

- Prohibitive cooling costs
- Performance problems
 - Increased circuit delay
 - Harder performance prediction at design
- Increased leakage power
 - Reaches 35-40%
 (e.g., 45nm process)
- Reliability degradation
 - → Higher permanent fault rate
 - Hot spots
 - Thermal cycles
 - Spatial gradients

Software to Reduce Temperature (basic)

□ If the chip is too hot, back off (Dynamic Thermal Management)

A More Sophisticated Strategy*

Physical Goals

- Minimize total energy
- Minimize max energy for each core
- Per core -- reduce time spent above threshold temperature
- Minimize spatial thermal gradients
- Minimize temporal thermal gradients

Software Goals include

Avoid hot spots by penalizing clustered jobs

Is Energy Management Sufficient?

- Energy or performance-aware methods are not always effective for managing temperature. We need:
 - → Dynamic techniques specifically addressing temperature-induced problems
 - → Efficient framework for evaluating dynamic techniques

Opt for P`Opt for E`Opt for T

P vs. E:

For E, less likely to work hard to gain marginal improvement in performance

Evs. T:

■ For T, less likely to concentrate work temporally or spatially

Problems with these approaches

- Assume slack
- Assume knowledge of tasks
- Assume (known) deadlines rather than "fastest possible"
- Assume that critical temps are a problem
- Do not take advantage of intra-task optimization

Plan: design software to be thermally optimized

Motivation

Energy consumption by data centers increases by <u>15%</u> per year [Koomey 08].

GHG Emissions, Cloud Computing Scenario
 GHG Emissions, BAU Scenario
 GHG Emissions, BAU Scenario
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

(BAU: Business as Usual)

Source: Pike Research

High temperature:

- Higher cooling cost, degraded reliability
- Software optimization for improving Performance, Energy, and Temperature:
 - Potential for significantly better
 P, E, T profiles than HW-only optimization
- Jointly optimizing P,E and T is necessary for high energyefficiency while maintaining high performance and reliability.

Data Center Greenhouse Gas Emissions by Scenario, World Markets: 2009-2020

Contributions

- Demonstrating the need for optimizing **PET** instead of optimizing <u>PE</u> or <u>PT</u> only.
- Developing guidelines to design **PET-aware software**.
- Providing application-specific analysis to design metrics and tools to evaluate P, E and T.
- Two case studies for SW-based optimization:

Software restructuring and tuning

- 36% reduction in system energy
- 30% reduction in CPU energy
- 56% reduction in temporal thermal variations.

Investigating the effect of software on cooling energy

3°C increase in peak temperature translates into 12.7W increase in system power.

Outline

Motivation/Goals

- Methodology
- Case studies
 - Software tuning to improve P,E and T
 - Effect of temperature optimization on system-energy
- Conclusion

Questions

Measurement Setup

System-under-test:

<u>12-core AMD Magny Cours processor, U1 server</u>

Power and Temperature Estimation (ideal)

Power and Temperature Estimation (practical)

Per-core power and temperature measurements are often unavailable. 😕

Power Estimation Methodology

- Motivation: Per-core power and temperature measurements are often not available.
- We custom-designed six microbenchmarks to build the power estimation model.

- In-cache matrix multiplication (double)
- In-cache matrix multiplication (short)
- Intensive memory access w/o sharing
- Intensive memory access w/ sharing

- In-cache matrix multiplication (double)
- In-cache matrix multiplication (short)
- Intensive memory access w/o sharing
- Intensive memory access w/ sharing
- Intensive memory access w/ frequent synchronization
- In-cache matrix multiplication (short-simple)

Power Model Validation

Power estimation for microbenchmarks

Error % for PARSEC benchmarks [Bienia PACT'08]

* Average error for PARSEC benchmarks is less than 5 %.

Outline

Motivation/Goals

- Methodology
- Case studies
 - Software tuning to improve P,E and T
 - Effect of temperature optimization on system-energy
- Conclusion

Questions

Parallelization of dedup

- A kernel in PARSEC benchmark suite
- Implements a data compression method called "deduplication"
- Combines local and global compression
- "deduplication" is an emerging method for compressing:
 - storage footprints
 - communication data

Default dedup (Pipelined)

- OS schedules the parallel threads as data become available
- Heavy data <u>dependency</u> among threads
- Increased need for <u>synchronization</u>
- Increased <u>data</u> <u>movement</u> (less reuse) inside processing cores
- Uneven computational load leads to uneven power consumption

Default version: Pipelined model

Task-decomposed dedup

Proposed version: Task-decomposed

Parameter Tuning

- Dedup threads takes specific number of tasks from the queue (default=20)
- Number of tasks between two synchronization points is critical for the application performance
- Tuning the number of tasks balances the workload across threads
 - Tuned value=10

Power & Temperature Results

Energy & Temperature Results

- Parameter-tuned task-based model improvements with respect to default parallelization model:
 - □ 30% reduction in CPU energy
 - 35% reduction in system energy
 - 56% reduction in per-core maximum temporal thermal variation
 - 41% reduction in spatial thermal variation

Outline

Motivation/Goals

- Methodology
- Case studies
 Software tuning to improve P,E and T
 Effect of temperature optimization on system-energy
- Conclusion

Questions

Effect of SW Optimization on Temperature

Optimizing temperature at µs granularity has substantial benefits.

- Quantifying effect of temperature optimization on system power
 - mPrime stress test
 - Microbenchmarks

mPrime Stress Test

mPrime (Prime95 on Windows) is a commonly used stress benchmark

■ "25°C → +17W system power, +10W chip power

Effect of Temperature on System Power

Two benchmarks with different P and T profiles:

- □ In-cache matrix multiplication (double) -- MM
 - **High power** due to stress on FPU units
- □ Intensive memory access w/ frequent synchronization -- Spinlock
 - Low power due to memory and synchronization operations

Conclusions

- We presented our initial results in application-level SW optimization for performance, energy and thermal distribution.
- Our evaluation infrastructure includes:
 direct measurements and power/temperature modeling.
- We presented 2 case studies:
 - Effect of code restructuring on P, E, and T.
 - Software optimization reduces system energy and maximum thermal variance by %35 and 56%.
 - Potential energy savings from temperature optimization:
 - 3°C reduction in peak temperature causes 12.7W system power savings.
- <u>Future work:</u> Expanding the SW tuning strategies for parallel workloads, explicitly focusing on temperature.