
Software Optimization for
Performance, Energy, and Thermal
Distribution: Initial Case Studies

Md. Ashfaquzzaman Khan, Can Hankendi,

Ayse Kivilcim Coskun, Martin C. Herbordt

{azkhan| hankendi | acoskun | herbordt}@bu.edu

Electrical and Computer Engineering

BOSTON UNIVERSITY

HPEC’11

09/21/2011

Funded by
Dean’s Catalyst Award, BU.

 Energy consumption by data
centers increases by 15% per
year [Koomey 08].

Motivation

(BAU:
Business as
Usual)

Source: Pike Research
MGHPCC

Holyoke Dam

 Energy consumption by data
centers increases by 15% per
year [Koomey 08].

Motivation

(BAU:
Business as
Usual)

Source: Pike Research
MGHPCC

Holyoke Dam

Goal: Reduce energy consumption
through temperature-aware software
optimization

Software to Reduce Power (basic)

 If cores are idle shut them off (Dynamic Power Management)

 If you have slack in the schedule, slow down (Dynamic
Voltage/Frequency Scaling)

Temperature is also a
concern

 Prohibitive cooling costs
 Performance problems

 Increased circuit delay
 Harder performance

prediction at design
 Increased leakage power

 Reaches 35-40%
 (e.g., 45nm process)

 Reliability degradation
  Higher permanent fault rate

 Hot spots
 Thermal cycles
 Spatial gradients

Figure: Intel

Figure:
Santarini,
EDN’05

Software to Reduce Temperature
(basic)

 If the chip is too hot, back off (Dynamic Thermal Management)

A More Sophisticated Strategy*

 Physical Goals
 Minimize total energy

 Minimize max energy for each core

 Per core -- reduce time spent above threshold temperature

 Minimize spatial thermal gradients

 Minimize temporal thermal gradients

 Software Goals include
 Avoid hot spots by penalizing clustered jobs

*Coskun et al. TVLSI 2008

Is Energy Management Sufficient?

 Energy or performance-aware methods are not always effective for
managing temperature. We need:

 Dynamic techniques specifically addressing temperature-induced
problems

 Efficient framework for evaluating dynamic techniques

%
 T

im
e

 S
p

e
nt

 a
t

V
a

rio
us

 T
e

m
p

e
ra

tu
re

Ra

ng
e

s

Coskun, BU

Opt for P ` Opt for E ` Opt for T

 P vs. E:
 For E, less likely to work hard to gain marginal improvement in

performance

 E vs. T:
 For T, less likely to concentrate work temporally or spatially

Problems with these approaches

 Assume slack

 Assume knowledge of tasks

 Assume (known) deadlines rather than “fastest possible”

 Assume that critical temps are a problem

 Do not take advantage of intra-task optimization

Plan: design software to be thermally optimized

 Energy consumption by data
centers increases by 15% per
year [Koomey 08].

Motivation

 High temperature:
 Higher cooling cost, degraded

reliability

 Software optimization for
improving Performance,
Energy, and Temperature:
 Potential for significantly better

P, E, T profiles than HW-only
optimization

 Jointly optimizing P,E and T is
necessary for high energy-
efficiency while maintaining
high performance and
reliability.

(BAU:
Business as
Usual)

Source: Pike Research

Contributions

 Demonstrating the need for optimizing PET instead of
optimizing PE or PT only.

 Developing guidelines to design PET-aware software.

 Providing application-specific analysis to design metrics
and tools to evaluate P, E and T.

 Two case studies for SW-based optimization:

 Software restructuring and tuning

• 36% reduction in system energy
• 30% reduction in CPU energy
• 56% reduction in temporal

thermal variations.

Investigating the effect of
software on cooling energy

3°C increase in peak
temperature translates into 12.7W
increase in system power.

Outline

 Motivation/Goals

 Methodology

 Case studies
 Software tuning to improve P,E and T

 Effect of temperature optimization on system-energy

 Conclusion

 Questions

✔

 System-under-test:
 12-core AMD Magny Cours processor, U1 server

Measurement Setup

10mV/A
conversion

40 ms data
sampling period

Temperature sensor &
performance counter
readings

System power

Data logger

Power and Temperature Estimation
(ideal)

Power
Measurements

HotSpot-5.0
Thermal

Simulator
[Skadron
ISCA’03]

Layout for Magny Cours

Per-core
power traces

Temperature
trace for

each core

 Northbridge Bus

L
2
0

L
2
1

L
2
2

L
2
3

L
2
4

L
2
5

L2 caches

Power and Temperature Estimation
(practical)

• Sparse power
 measurements
• Performance
 monitors

Our Power
Estimation

Model

HotSpot-5.0
Thermal

Simulator
[Skadron
ISCA’03]

Layout for Magny Cours Per-core
power traces

Temperature
trace for

each core

 Northbridge Bus

L
2
0

L
2
1

L
2
2

L
2
3

L
2
4

L
2
5

L2 caches

Per-core power and temperature measurements are often unavailable. 

 Motivation: Per-core power and temperature measurements are
often not available.

 We custom-designed six microbenchmarks to build the power
estimation model.

Power Estimation Methodology

Linear
Regression

Performance
counter data

+
power

measurements

Coefficients

• CPU cycles
• Retired micro-ops
• Retired MMX and FP instructions
• Retired SSE operations

• L2 cache misses
• Dispatch stalls
• Dispatched FPU instructions
• Retired branch instructions

Hardware events collected through the counters:

Microbenchmarking

Microbenchmarking

Microbenchmarking

Microbenchmarking

L3-Cache

Main Memory

 In-cache matrix
multiplication (double)

Microbenchmarking

L3-Cache

 In-cache matrix
multiplication (short)

 Intensive memory access w/o

sharing

 Intensive memory access w/

sharing

Main Memory

 In-cache matrix
multiplication (double)

Microbenchmarking

L3-Cache

 In-cache matrix
multiplication (short)

 Intensive memory access w/o

sharing

 Intensive memory access w/

sharing

Main Memory

 Intensive memory access w/
frequent synchronization

  In-cache matrix multiplication
(short-simple)

Power Model Validation

Power estimation for microbenchmarks

* Average error for PARSEC benchmarks is less than 5 %.

Projected
Measured

 Error % for PARSEC
benchmarks [Bienia PACT’08]

 ROI Error % (Avg.P)
All Error % (Avg.P)

Outline

 Motivation/Goals

 Methodology

 Case studies
 Software tuning to improve P,E and T

 Effect of temperature optimization on system-energy

 Conclusion

 Questions

✔

✔

 A kernel in PARSEC benchmark suite

 Implements a data compression
method called “deduplication”

 Combines local and global
compression

 “deduplication” is an emerging
method for compressing:
 storage footprints

 communication data

Parallelization of dedup

Default dedup (Pipelined)

 OS schedules the
parallel threads as data
become available

 Heavy data
dependency among
threads

 Increased need for
synchronization

 Increased data
movement (less reuse)
inside processing cores

 Uneven computational
load leads to uneven
power consumption

Task-decomposed dedup

 More data reuse

 Less synchronization

 Balanced computation
load among cores

 Improved performance,
energy and temperature
behavior

 Parameter optimized for
target architecture

 Dedup threads takes
specific number of tasks
from the queue (default=20)

 Number of tasks between
two synchronization points is
critical for the application
performance

 Tuning the number of tasks
balances the workload
across threads

 Tuned value=10

Parameter Tuning

Ideal

Performance scaling of default and
proposed version of dedup

Power & Temperature Results
DEFAULT TASK-DECOMPOSED TASK-DECOMPOSED &

PARAMETER TUNED

Per-core temperature (°C)

Chip power (W)
80
70
60
50
40
30
20
10
 0

 50 100 150 200 250 300 350 400
a Sampling Interval (x40ms)

 50 100 150 200 250 300 350 400
a Sampling Interval (x40ms)

50 100 150 200 250 300
Sampling Interval (x40ms)

60

59

58

57

56

55 50 100 150 200 250 300 350 400
a Sampling Interval (x40ms)

 50 100 150 200 250 300 350 400
a Sampling Interval (x40ms)

 50 100 150 200 250 300
Sampling Interval (x40ms)

 Parameter-tuned task-based model improvements with
respect to default parallelization model:

 30% reduction in CPU energy

 35% reduction in system energy

 56% reduction in per-core maximum temporal thermal
variation

 41% reduction in spatial thermal variation

Energy & Temperature Results

Outline

 Motivation/Goals

 Methodology

 Case studies
 Software tuning to improve P,E and T

 Effect of temperature optimization on system-energy

 Conclusion

 Questions

✔

✔

✔

 Optimizing temperature at µs granularity has substantial
benefits.

Effect of SW Optimization on
Temperature

 Quantifying effect of temperature optimization on system
power
 mPrime stress test

 Microbenchmarks

 mPrime (Prime95 on Windows) is a commonly used stress benchmark

 ” 25°C  +17W system power, +10W chip power

mPrime Stress Test

System power
NB temperature
Chip power

120

140

160

180

200

220

Power (W)

100 200 300 400 500 600 700 800
Time(s)

10

20

30

40

50

60

70
Temperature (°C)

” 17W

” 25°C

” 10W

Two benchmarks with different P and T profiles:

 In-cache matrix multiplication (double) -- MM

 High power due to stress on FPU units

 Intensive memory access w/ frequent synchronization -- Spinlock

 Low power due to memory and synchronization operations

Effect of Temperature on
System Power

ΔPeak Temp. = 3°C

ΔChip Power = 10.8W

ΔSystem Power = 23.5W

 We presented our initial results in application-level SW optimization for
performance, energy and thermal distribution.

 Our evaluation infrastructure includes:
direct measurements and power/temperature modeling.

 We presented 2 case studies:

 Effect of code restructuring on P, E, and T.

 Software optimization reduces system energy and maximum
thermal variance by %35 and 56%.

 Potential energy savings from temperature optimization:

 3°C reduction in peak temperature causes 12.7W system
power savings.

 Future work: Expanding the SW tuning strategies for parallel
workloads, explicitly focusing on temperature.

Conclusions

	Software Optimization for Performance, Energy, and Thermal Distribution: Initial Case Studies
	Slide Number 2
	Slide Number 3
	Software to Reduce Power (basic)
	Temperature is also a concern
	Software to Reduce Temperature (basic)
	A More Sophisticated Strategy*
	Is Energy Management Sufficient?
	Opt for P ≠ Opt for E ≠ Opt for T
	Problems with these approaches
	Slide Number 11
	Slide Number 12
	Outline
	Measurement Setup
	Power and Temperature Estimation (ideal)
	Power and Temperature Estimation (practical)
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Outline
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Outline
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36

