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Goal:  Reduce energy consumption 
through temperature-aware software 
optimization 



Software to Reduce Power (basic) 

 If cores are idle shut them off (Dynamic Power Management) 

 If you have slack in the schedule, slow down (Dynamic 
Voltage/Frequency Scaling) 



Temperature is also a 
concern 

 Prohibitive cooling costs 
 Performance problems 

 Increased circuit delay 
 Harder performance 

prediction at design 
 Increased leakage power 

 Reaches 35-40% 
 (e.g., 45nm process)  

 Reliability degradation 
  Higher permanent fault rate 

  Hot spots 
  Thermal cycles 
  Spatial gradients 

Figure: Intel 

Figure:  
Santarini,  
EDN’05 



Software to Reduce Temperature 
(basic) 

 If the chip is too hot, back off (Dynamic Thermal Management) 



A More Sophisticated Strategy* 

 Physical Goals 
 Minimize total energy 

 Minimize max energy for each core 

 Per core -- reduce time spent above threshold temperature 

 Minimize spatial thermal gradients 

 Minimize temporal thermal gradients 

 Software Goals include 
 Avoid hot spots by penalizing clustered jobs 

 

 

*Coskun et al. TVLSI 2008 



Is Energy Management Sufficient? 

 Energy or performance-aware methods are not always effective for 
managing temperature. We need: 

 Dynamic techniques specifically addressing temperature-induced 
problems 

 Efficient framework for evaluating dynamic techniques 
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Opt for P `  Opt for E  `  Opt for T 

 P vs. E:   
 For E, less likely to work hard to gain marginal improvement in 

performance 

 E vs. T:   
 For T, less likely to concentrate work temporally or spatially 



Problems with these approaches 

 Assume slack 

 Assume knowledge of tasks 

 Assume (known) deadlines rather than “fastest possible” 

 Assume that critical temps are a problem 

 Do not take advantage of intra-task optimization 

 

Plan:  design software to be thermally optimized 



 Energy consumption by data 
centers increases by 15% per 
year [Koomey 08]. 

 

 

Motivation 

 High temperature: 
 Higher cooling cost, degraded 

reliability 

 Software optimization for 
improving Performance, 
Energy, and Temperature: 
 Potential for significantly better 

P, E, T profiles than HW-only 
optimization 

 Jointly optimizing P,E and T is 
necessary for high energy-
efficiency while maintaining 
high performance and 
reliability. 

(BAU: 
Business as 
Usual) 

Source: Pike Research 



Contributions  

 Demonstrating the need for optimizing PET instead of 
optimizing PE or PT only.   

 Developing guidelines to design PET-aware software. 

 Providing application-specific analysis to design metrics 
and tools to evaluate P, E and T. 

 Two case studies for SW-based optimization: 

 Software restructuring and tuning 
 

• 36% reduction in system energy 
• 30% reduction in CPU energy 
• 56% reduction in temporal 

thermal variations. 

Investigating the effect of 
software on cooling energy 
 

3°C increase in peak 
temperature translates into 12.7W 
increase in system power. 



Outline 

 Motivation/Goals 

 Methodology 

 Case studies 
 Software tuning to improve P,E and T 

 Effect of temperature optimization on system-energy 

 Conclusion 

 Questions 

✔ 



 System-under-test:   
 12-core AMD Magny Cours processor, U1 server 

Measurement Setup  

10mV/A 
conversion 

40 ms data 
sampling period 

Temperature sensor & 
performance counter 
readings 

System power 

Data logger 



Power and Temperature Estimation 
(ideal) 

Power 
Measurements 

HotSpot-5.0 
Thermal 

Simulator 
[Skadron 
ISCA’03] 

Layout for Magny Cours 

Per-core 
power traces 

Temperature 
trace for 

each core 
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Power and Temperature Estimation 
(practical) 

• Sparse power 
  measurements 
• Performance  
  monitors 

Our Power 
Estimation 

Model 

HotSpot-5.0 
Thermal 

Simulator 
[Skadron 
ISCA’03] 

Layout for Magny Cours Per-core 
power traces 

Temperature 
trace for 

each core 
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Per-core power and temperature measurements are often unavailable.   



 Motivation:  Per-core power and temperature measurements are 
often not available.  

 We custom-designed six microbenchmarks to build the power 
estimation model.  

 

 

Power Estimation Methodology 

Linear 
Regression 

Performance 
counter data 

+  
power 

measurements 

Coefficients 

 
• CPU cycles 
• Retired micro-ops 
• Retired MMX and  FP instructions 
• Retired SSE operations 

 
• L2 cache misses 
• Dispatch stalls 
• Dispatched FPU instructions 
• Retired branch instructions 

Hardware events collected through the counters: 



Microbenchmarking 
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Microbenchmarking 

L3-Cache 

Main Memory 



 In-cache matrix 
multiplication (double) 

 

Microbenchmarking 

L3-Cache 

 In-cache matrix 
multiplication (short) 
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sharing 

 
 Intensive memory access w/ 

sharing 

 

Main Memory 



 In-cache matrix 
multiplication (double) 

 

Microbenchmarking 

L3-Cache 

 In-cache matrix 
multiplication (short) 

 
 Intensive memory access w/o 

sharing 

 
 Intensive memory access w/ 

sharing 

 

Main Memory 

 Intensive memory access w/ 
frequent synchronization 

  In-cache matrix multiplication 
(short-simple) 



Power Model Validation 
 

Power estimation for microbenchmarks 

 

 

 

 

 

 

* Average error for PARSEC benchmarks is less than 5 %. 

Projected 
Measured 

 Error % for PARSEC 
benchmarks [Bienia PACT’08] 

 ROI Error % (Avg.P) 
All Error % (Avg.P) 
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 A kernel in PARSEC benchmark suite  

 Implements a data compression 
method called “deduplication” 

 Combines local and global 
compression  

 “deduplication” is an emerging 
method for compressing: 
 storage footprints 

 communication data 

Parallelization of dedup 



Default dedup (Pipelined) 

 OS schedules the 
parallel threads as data 
become available 

 Heavy data 
dependency among 
threads 

 Increased need for 
synchronization 

 Increased data 
movement (less reuse) 
inside processing cores 

 Uneven computational 
load leads to uneven 
power consumption 



Task-decomposed dedup 
 

 More data reuse 

 Less synchronization 

 Balanced computation 
load among cores 

 Improved performance, 
energy and temperature 
behavior 

 Parameter optimized for 
target architecture 

 



 Dedup threads takes 
specific number of tasks 
from the queue (default=20) 

 Number of tasks between 
two synchronization points is 
critical for the application 
performance 

 Tuning the number of tasks 
balances the workload 
across threads 

 Tuned value=10 

Parameter Tuning  

Ideal 

Performance scaling of default and 
proposed version of dedup 



Power & Temperature Results 
DEFAULT TASK-DECOMPOSED TASK-DECOMPOSED & 

PARAMETER TUNED 
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 Parameter-tuned task-based model improvements with 
respect to default parallelization model: 

 

 30% reduction in CPU energy 
 

 35% reduction in system energy 
 

 56% reduction in per-core maximum temporal thermal 
variation 
 

 41% reduction in spatial thermal variation  

Energy & Temperature Results 
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 Optimizing temperature at µs granularity has substantial 
benefits. 

 

Effect of SW Optimization on 
Temperature 

 Quantifying effect of temperature optimization on system 
power 
 mPrime stress test 

 Microbenchmarks 



 mPrime (Prime95 on Windows) is a commonly used stress benchmark 

 ” 25°C  +17W system power,   +10W chip power 

mPrime Stress Test 
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Chip power 
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Two benchmarks with different P and T profiles: 

 In-cache matrix multiplication (double) -- MM 

 High power due to stress on FPU units 

 Intensive memory access w/ frequent synchronization -- Spinlock 

 Low power due to memory and synchronization operations 

Effect of Temperature on  
System Power 

ΔPeak Temp. = 3°C 

ΔChip Power = 10.8W 

ΔSystem Power = 23.5W 

 



 We presented our initial results in application-level SW optimization for 
performance, energy and thermal distribution.  

 Our evaluation infrastructure includes:                                              
direct measurements and power/temperature modeling.  

 We presented 2 case studies: 

 Effect of code restructuring on P, E, and T.  

 Software optimization reduces system energy and maximum 
thermal variance by %35 and 56%. 

 Potential energy savings from temperature optimization: 

 3°C reduction in peak temperature causes 12.7W system 
power savings.  

 Future work:  Expanding the SW tuning strategies for parallel 
workloads, explicitly focusing on temperature. 

Conclusions 
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