Modular, Scalable Computing for Systems with Tight SWaP Constraints

Prepared by
Colorado Engineering, Inc.
for HPEC 2011
September 21, 2011
Outline

• Highlight considerations for meeting Size, Weight, and Power (SWaP) of embedded processing systems within constrained platforms

• Present an architecture developed under a Missile Defense Agency (MDA) SBIR facilitating SWaP-optimized solutions
Meeting SWaP Challenges

• Suggests need for optimized system solutions
• Engineer should have flexibility to address size, weight, and power in trade space
• Ideal toolbox would be
 - Heterogeneous
 • ASICs
 • FPGAs
 • GPUs
 • General purpose / multi-core
 - Modular
 - Scalable
Legacy Approach to Modularity and Scalability: Backplanes

- Add weight, size, and cost
- Constrain incremental scalability
 - Truly SWaP-optimized, backplane-centric solution should have zero empty slots
 - But zero available slots means system cannot incrementally scale to address fluid requirements
 - Solution then requires an additional backplane, or a new backplane with more slots
- Bottom line: backplanes are not SWaP friendly
Out-of-the-Box Approach to Embedded Computing for SWaP

- CEI and the Navy, sponsored by MDA, defined an open approach to SWaP-friendly embedded computing architectures
 - NRL
 - NSWC
 - ONR
- RARE: Reconfigurable Advanced Rapid-prototyping Environment
- SBIR Phase I & II
- Recipient of 2011 Tibbetts Award
- No backplane!
RARE: MOSA-Inspired Technology

- Decomposes a general sensor system into functional COTS building blocks
- Blocks provide a modular way to achieve loosely coupled common operational subsystem components
- When tied together using well defined interfaces, blocks form a complete, scalable processing and control system
- Addresses systems for small UAVs to large manned aircraft
- Applicable to radar, -INT, EW, and digital communications
Modularity, Scalability, and Flexibility

- RARE modules are 6.25” x 6.25” cards with interface connections in all three dimensions (x, y, z)
 - PCIe fabric, LVDS, and SerDes for data and control plane communications
 - Provide combined I/O bandwidth of 39 GB/sec per module
- Allows integrators to stack and/or tile modules in x, y, or z to scale performance while simultaneously addressing processing load, I/O bandwidth, and physical installation footprint
 - Systems can be physically reconfigured to address different footprints while maintaining common hardware, firmware, and software across platforms
 - RARE modules can implement solutions in a fraction of the volume of traditional 20-slot 6U style backplanes
Module Examples

Processor Module
- AMCC 460SX PowerPC
- Xilinx Virtex-6 FPGA
- Dual 1Gb Ethernet
- USB, RS-232
- Short range wireless

Architecture easily incorporates other technologies (GPUs, multicore, ASICs, ADCs, DACs, I/O...)

ADC+Processor Module
- 10 ADC channels
- 16b @ 160MSPS
- Xilinx Virtex-6 FPGA

DAC+Processor Module
- 2 DAC channels
- 16b @ 1GSPS
- Xilinx Virtex-6 FPGA

Other Modules
- Dual 10Gb Ethernet
- Adapter for commercial PCIe cards
- Tailored interfaces
- High performance LO synthesis and clock distribution
- RF functions (up/down conversion)

Other Modules
- Dual 10Gb Ethernet
- Adapter for commercial PCIe cards
- Tailored interfaces
- High performance LO synthesis and clock distribution
- RF functions (up/down conversion)
Heterogeneous Processing

Xilinx Virtex 6 High Level Stats

<table>
<thead>
<tr>
<th>Part Number</th>
<th>XC6VLX240T</th>
<th>XC6VLX550T</th>
<th>XC6VSX475T (DSP optimized part)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLBs</td>
<td>18,840</td>
<td>42,960</td>
<td>37,200</td>
</tr>
<tr>
<td>Block Memory</td>
<td>14.976Mbits</td>
<td>22.752Mbits</td>
<td>38.304Mbits</td>
</tr>
<tr>
<td>Clock Managers (DLL/PLL)</td>
<td>12</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Multiplier Accumulators</td>
<td>768</td>
<td>864</td>
<td>2,016</td>
</tr>
<tr>
<td>Configuration Memory</td>
<td>70.4Mbits</td>
<td>1.374Gbits</td>
<td>149.4Mbits</td>
</tr>
</tbody>
</table>

CLB= Configuration Logic Block: 8 x 6 input LUTs and 16 Flip-Flops

Multipliers = 18 to 40 bit inputs with 48-bit output (much more functionality – 50 page data sheet)

AMCC PPC460SX

- 1.2GHz
- Three Gen 2 PCI Express interfaces
- On-chip DDR2 SRAM controller
- Storage and network encryption engines
- 1Gb Ethernet, full duplex MACs with TCP/IP assist and Quality of Service support
RARE Inter-Module I/O Bandwidths

<table>
<thead>
<tr>
<th>RARE Connector</th>
<th>Half Duplex (FPGA LVDS @ 1GHz)</th>
<th>Full Duplex</th>
<th>Bandwidth (per Connector)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># of Clusters</td>
<td># of LVDS Pairs</td>
<td>LVDS Total (Gb/s)</td>
</tr>
<tr>
<td>X</td>
<td>3</td>
<td>7</td>
<td>21,000</td>
</tr>
<tr>
<td>Y</td>
<td>3</td>
<td>7</td>
<td>21,000</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>13</td>
<td>26,000</td>
</tr>
</tbody>
</table>

RARE Connector Total Bandwidths

<table>
<thead>
<tr>
<th>RARE Connector</th>
<th>Total Bandwidth (Dual Connectors per Direction)</th>
<th>Total Bandwidth per RARE Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>13.25 GB/s</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>9.25 GB/s</td>
<td>39.00 GB/s</td>
</tr>
<tr>
<td>Z</td>
<td>16.50 GB/s</td>
<td></td>
</tr>
</tbody>
</table>
Cross Channel Communication without Dedicated Switch Cards

- FPGAs also interconnect with low latency, high bandwidth across the 3D topology
 - LVDS
 - SerDes

- PCIe switches built into modular architecture
- End points can be FPGAs or General Purpose Processors
X and Y Interfaces per Module

X & Y “1” Style Module Connectors (Plug into “2” Style)

<table>
<thead>
<tr>
<th>Processor X1</th>
<th>Processor Y1</th>
<th>ADC Y1</th>
<th>DAC X1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDS</td>
<td>LVDS</td>
<td>LVDS</td>
<td>LVDS</td>
</tr>
<tr>
<td>PCIe PPC</td>
<td>PCIe PPC</td>
<td>PCIe</td>
<td>PCIe</td>
</tr>
<tr>
<td>PCIe FPGA</td>
<td>PCIe FPGA</td>
<td>PCIe</td>
<td>PCIe</td>
</tr>
</tbody>
</table>

X & Y “2” Style Module Connectors (Plug into “1” Style)

<table>
<thead>
<tr>
<th>Processor X2</th>
<th>Processor Y2</th>
<th>ADC Y2</th>
<th>DAC X2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDS</td>
<td>LVDS</td>
<td>LVDS</td>
<td>LVDS</td>
</tr>
<tr>
<td>PCIe PPC</td>
<td>PCIe PPC</td>
<td>PCIe</td>
<td>PCIe</td>
</tr>
<tr>
<td>PCIe FPGA</td>
<td>PCIe FPGA</td>
<td>PCIe</td>
<td>PCIe</td>
</tr>
</tbody>
</table>

- Supports LVDS, PCIe (PPC), and PCIe (FPGA) supports LVDS and PCIe (PPC) supports LVDS and PCIe (PPC)
- Supports LVDS and PCIe (PPC) supports LVDS (please call CEI for PCIe support)

Use or disclosure of data contained on this sheet is subject to the restrictions listed on the title page.
Z Interfaces per Module

"Z" Style Module Connectors (1 ↔ 2; 3 ↔ 4)

<table>
<thead>
<tr>
<th>Processor Z1</th>
<th>Processor Z3</th>
<th>ADC Z1</th>
<th>DAC Z1</th>
<th>DAC Z3</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDS; PCIe PPC; PCIe FPGA</td>
<td>LVDS; PCIe FPGA</td>
<td>LVDS</td>
<td>LVDS; PCIe FPGA</td>
<td>n/a</td>
</tr>
<tr>
<td>LVDS; PCIe PPC; PCIe FPGA</td>
<td>n/a</td>
<td>supports LVDS</td>
<td>supports LVDS and PCIe (FPGA)</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processor Z2</th>
<th>Processor Z4</th>
<th>ADC Z2</th>
<th>DAC Z2</th>
<th>DAC Z4</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDS; PCIe PPC; PCIe FPGA</td>
<td>SERDES</td>
<td>supports LVDS and PCIe (FPGA)</td>
<td>supports LVDS</td>
<td>supports SERDES</td>
</tr>
<tr>
<td>n/a</td>
<td>supports SERDES</td>
<td>n/a</td>
<td>supports LVDS</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y1: LVDS; PCIe PPC</th>
<th>X1: LVDS; PCIe PPC; PCIe V6</th>
<th>Z1: LVDS; PCIe PPC; PCIe V6</th>
<th>Z3: SERDES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RARE PPC/FPGA Module</th>
<th>RARE ADC/FPGA Module</th>
<th>RARE DAC/FPGA Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1: LVDS</td>
<td>Z1: LVDS; PCIe V6</td>
<td>Z1: LVDS; PCIe V6</td>
</tr>
<tr>
<td>Z2: LVDS; PCIe PPC; PCIe V6</td>
<td>Z2: LVDS; PCIe V6</td>
<td>Z2: LVDS</td>
</tr>
<tr>
<td>Z4: SERDES</td>
<td>Z4: SERDES</td>
<td>Z4: SERDES</td>
</tr>
</tbody>
</table>

Use or disclosure of data contained on this sheet is subject to the restrictions listed on the title page.
Integrated Health and Status Monitoring

• I^2C network of microcontrollers distributed throughout architecture for health and status
 - ADCs built into microcontrollers monitor voltages, currents, and temperatures
 - Used to sequence power supplies and protect modules in event of supply issues or overheating
 - Microcontrollers can shut down modules or system when tolerances are not within defined limits

• Fully programmable and tailorable
• More information available in poster session

Use or disclosure of data contained on this sheet is subject to the restrictions listed on the title page.
Software and High Level Programming Model

- Leverages open source
 - Avoids sole source proprietary operating systems
 - Lower TOC
 - Can be tailored by user
- SDK handles module communications protocols and data movement between processors and FPGAs
 - Linux kernel
 - Fedora x86-64 gcc cross compiler tool chain
 - U-Boot boot loader
 - Core root file system
- Code wrappers encapsulate modules and enable MATLAB™ / Simulink™ tool flows for code development
- Enables quick turn from algorithms concept and simulation to implementation
SDK Encompasses CPUs and FPGAs
Packaging Strategies

• RARE flexibility opens up packaging trade space to systems integrator
 - Physical enclosure
 - Thermal management

• Enables solutions that are truly optimized for C-SWaP on the deployment platform
 - Standard 19” rack mount enclosure
 - Tailored box-level solutions
 - Platform-ready deployment
Extreme Packaging Flexibility to Address Size: FlexRARE

- Increases system “morphability,” flexibility, and out-of-the-box installations (literally!)
- Increases bandwidth for stacked systems
- No performance degradation
- Fully customizable cable lengths available (SamTec)
- Right angle or straight connectors available
- Promotes straight-forward board level replacement in mesh structure
Example Applications

• RARE architecture is being utilized by multiple DoD agencies to meet C-SWaP while adhering to MOSA philosophies

• Two examples
 - Programmable MIMO radar transmit / receive system
 - Sense and Avoid radar for UAVs
Example 1: Multichannel DREX

- Programmable MIMO radar transmit / receive system
- Uses three COTS RARE modules
 - 2x exciter channels (1 GHz)
 - 10x receive channels (160 MSPS)
 - 3x Virtex-6 FPGAs
 - 1x PPC
 - 2x 1GbE
- Electronics: 6.25” x 6.25” x 4”
- Dual 10GbE can be supported through the addition of one more module
Example 2: Sense and Avoid Radar

- Turnkey search & track capability
- 21.25” x 16” x 5.5”
- 400W input power (28VDC)
- <45 lbs.

Antenna Sub-Assembly
Includes heat sink and mounting hardware

RF Sub-Assembly
Up converter
Down converters
LO Synthesis
RF filters

Digital Electronics Sub-Assembly
6 RARE modules in 2 layers
(capacity = 9 in 3 layers)
Summary

• RARE facilitates embedded processing solutions for SWaP-constrained applications
 - Heterogeneous technology helps balance processing capability with power consumption
 - Solutions are not backplane constrained thus maximizing flexibility within SWaP trade space
 - Architecture enables integrators to simultaneously address processing capacity, I/O bandwidth, and physical installation footprint while eliminating the cost and impact of backplane and dedicated switch card architectures
 - Model-based software development accelerates transition from algorithmic concept to deployment

• MOSA approach facilitates the realization of common subsystem building blocks and lowers total ownership costs

• Award winning technology being utilized in multiple DoD programs
Thank You!

For more information please contact:

Michael J. Bonato
Colorado Engineering, Inc.
michael.bonato@coloradoengineeringinc.com
719-388-8582 (office)

www.coloradoengineeringinc.com
About Colorado Engineering

- Provides engineered solutions for high performance computing and sensor systems
 - Hardware: FPGA design and multi-layer high speed digital and analog circuit card designs for C-SWaP
 - Software: high performance computing and system management at real-time embedded and enterprise levels
 - Systems: radar, -INT, EW, digital communications, DSP, grid computing, situational awareness, THz technologies
- Recognized industry leaders in MOSA applications
- Cross discipline experience of engineering staff
- Woman-Owned small business located in Colorado Springs
- TS facility clearance (in process)
- Recent recipient of Tibbetts and Nunn-Perry awards
- 23 Phase I/II SBIR & STTR awards with over 37 technologies deployed in DoD and Government systems
- For more information
 - www.coloradoengineeringinc.com
 - 719-388-8582