
SIPHER: Scalable Implementation of Primitives for Homomorphic
EncRyption – FPGA implementation using Simulink

David Bruce Cousins, Kurt Rohloff, Chris Peikert, Rick Schantz

Raytheon BBN Technologies, Georgia Institute of Technology

{dcousins, krohloff, schantz}@bbn.com cpeikert@cc.gatech.edu

Abstract
Practical Fully Homomorphic Encryption (FHE) would be a

game-changing technology to enable secure, general

computation on encrypted data, e.g., on untrusted off-site

hardware. Recent theoretical breakthroughs demonstrated

the existence of Fully Homomorphic Encryption schemes

[1,4]. However, FHE remains impractical because current

implementations are many orders of magnitude too slow for

practical use, and do not scale well to the very large keys

and ciphertexts needed to assure a sufficient level of

security. A new DARPA program (PROCEED) has as its

focus the acceleration of various aspects of the FHE

concept toward practical implementation and use.

In this paper we present early work on our SIPHER project,

an element of the PROCEED program, whose goal is to

demonstrate FHE implementations that improve the state of

the art by many orders of magnitude. As part of our activity

we are developing a set of hardware primitives to accelerate

FHE implementations based on lattice problems [3]. As an

important aspect of our design methodology we use a state

of the art tool-chain offered by the Mathworks to develop

FPGA circuits from Simulink Models. We initially develop

prototype descriptions in Matlab that we re-implement in a

stream oriented, hardware implementable manner in

Simulink. The operations of the implementations are

compared to verify correctness. A conversion from

Simulink to VHDL is done in a completely automated

fashion using Mathwork’s HDL coder. This tool chain

provides us the means to develop our primitives, including

cyclic VHDL based FPGA prototyping, much faster than

traditional methods.

Fully and Somewhat Homomorphic

Encryption
Fully Homomorphic Encryption (FHE) holds the promise to

securely run arbitrary computations over encrypted data on

untrusted computation hosts [4]. The general FHE concept

of operations is that sensitive data is encrypted with a

public key, then sent to an untrusted computation host,

which can perform arbitrary computations on the encrypted

data without first needing to decrypt it. It has been shown

to be theoretically possible to evaluate arbitrary programs

using just two special purpose FHE operations, EvalAdd

and EvalMult, which roughly correspond to bitwise XOR

and AND gates operating on encrypted bits. A sequence of

these operations is run against the encrypted data, resulting

in an encryption of the output of the original program run

on the unencrypted data. This encrypted result can then be

sent back to the original client, who decrypts the result

using its secret key. The encrypted data is protected at all

times with reasonable security guarantees based on

computational hardness results.

FHE enables more secure and private computation, but to

be effective there needs to be multiple orders of magnitude

efficiency improvements before it can be practical. Known

FHE schemes are highly inefficient partly because they are

―noisy‖ - the encryption schemes’ ciphertext is a function

not only of the plaintext and encryption keys but also of a

noise term. The amount of noise in a ciphertext rapidly

increases as the EvalAdd and EvalMult operations are

performed, and after too many such operations there is too

much noise to correctly decrypt the ciphertext. To run

larger numbers of EvalAdd and EvalMult operations, FHE

schemes typically address the accumulation of noise with a

very computationally expensive ―recryption‖ operation that

is periodically run on intermediate ciphertexts to keep the

noise at a level that still permits decryption.

A Somewhat Homomorphic Encryption (SHE) scheme

supports several (but not unlimited) EvalMult and EvalAdd

operations while preserving the correctness of decryption.

In other words, SHE can schemes support secure

computation for only a small subset of programs. Our

development approach is to select an efficient

implementation of an SHE scheme which can be converted

into a full FHE scheme with the addition of a recryption

(noise reduction) operation and/or other supporting

modifications. This enables us to incrementally develop

SHE results using modest initial resources.

Although there have been some initial FHE

implementations [1], there have been no practical

implementations that can be used for effective general

computation. Current designs of FHE schemes rely on

operations (i.e. modular arithmetic with an enormous

modulus) that are inefficient on standard CPU architectures

and which are too memory intensive. For convenience all of

these previous implementations have been limited by their

focus on CPUs and do not take advantage of specialized

parallel computation hardware like FPGAs.

Figure 1 shows our vision for the layered services we

provide in our FHE implementation. There are software

interfaces for implementations of the basic FHE operations

(KeyGen, Encrypt, EvalAdd, EvalMult, Recrypt, Decrypt)

as a primitive basis for constructing more general

applications on encrypted data. Our approach to the FHE

primitives is based on the highly efficient lattice-based

techniques developed by one of our investigators [3], which

can be implemented with only a handful of core

mathematical primitive operations (see Figure 2). Many of

these operations are closely related to well-understood

operations, such as Fast Fourier Transforms, which we are

targeting for efficient implementations on FPGAs. The

EvalAdd and EvalMult operations for example are simply

element wise vector adds and multiplies taken modulo some

particular prime integer q. These are trivial to express using

Matlab: c = mod(a+b, q) and c = mod(a.*b, q).

We are leveraging previous work on signal processing

implementations to implement the primitives (and

consequently the FHE scheme) as circuits on FPGAs. The

FPGAs provide highly cost-effective parallelism.

One of our primary primitive operations is the Chinese

Remainder Transform (CRT). The CRT is mathematically

similar to the Discrete Fourier Transform, but implemented

using modular integer (instead of complex) arithmetic.

Figure 3 shows the CRT implementation we are working

with that is structurally very similar to the familiar

processing of multi-dimensional signal data. The

similarities of our primitives with well understood signal-

processing operations that have been efficiently

implemented in FPGAs give us confidence toward

developing efficient and scalable FPGA implementations of

the primitives.

The FFT operation in Figure 4 is similar to the standard

FFT [2], except all operations are done in modulo q

arithmetic. We were able to take Mathwork’s example

Simulink streaming FFT model (Figure 4), slightly modify

the ordering of the output, and easily change from complex

to integer arithmetic simply by altering the input and

twiddle factor data types. Converting to modular arithmetic

is also straightforward.

Figure 1: Conceptual diagram of system.

Figure 2: Primitives for a SHE scheme.

Figure 3: Internal Structure of CRT Primitive showing similarity

to signal processing data flow.

Figure 4: Simulink model for streaming FFT.

To implement the modular arithmetic efficiently in

hardware we have taken advantage of the Montgomery

Reduction method [5], which allows one to express mod q

operations in a larger basis r, which can be a power of two.

So while the bits required to represent the integers have

grown, all arithmetic operations now are allowed to wrap

around on overflow, eliminating the need to do a costly

modular reduction operation in the hardware. We

implement the Montgomery reduction method in Simulink

using the fixed point tool box (Figure 5). The additional

complexity this adds to the Simulink model for our ring

operations is trivial. Figure 6 shows the Montgomery

reduction steps in Red and Blue. Red steps convert to the

Montgomery space, and are done once for each input. Any

number of additions can be done without the need for a

reduction step. Each multiply requires one reduction step. A

final reduction step converts back into the original mod q

representation. Our modified FFT implementation requires

pre-computation of the twiddle factors in Montgomery

representation (no real time impact), one reduction step for

each input sample, one reduction for each output sample

and one reduction at the output of each butterfly

multiplication. Since all reduction is done using a pipelined

approach, there is no additional computation time added

(just latency).

Interim Results
Our presentation will include examples of our primitives

coded in Matlab and Simulink and examples of VHDL code

generated by the HDL coder. We will also be able to show

timing results from Modelsim based simulations of the

resulting code.

References
[1] C. Gentry and S. Halevi. Implementing Gentry’s Fully-

Homomorphic encryption scheme. In Kenneth Paterson,

editor, Advances in Cryptology – EUROCRYPT 2011,

volume 6632 of Lecture Notes in Computer Science, chapter

9, pages 129–148. Springer, 2011.

[2] W. M. Gentleman and G. Sande, "Fast Fourier transforms—

for fun and profit," Proc. AFIPS 29, 563–578 (1966).

[3] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. ―On

ideal lattices and learning with errors over rings‖. In Henri

Gilbert, editor, Advances in Cryptology – EUROCRYPT

2010, volume 6110 of Lecture Notes in Computer Science,

chapter 1, pages 1–23. Springer Berlin / Heidelberg, Berlin,

[4] D. Micciancio. A first glimpse of cryptography's Holy Grail.

Comm. ACM 53, 3 (March 2010), 96-96.

[5] Peter L. Montgomery ―Modular Multiplication Without Trial

Division‖, Mathematics of Computation Vol. 44, No. 170

(Apr., 1985), pp. 519-521, American Mathematical Society.

Figure 5: Simulink model for Montgomery Reduction

Figure 6: Simulink model for Ring Multiply-Add

