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Abstract 
Practical Fully Homomorphic Encryption (FHE) would be a 

game-changing technology to enable secure, general 

computation on encrypted data, e.g., on untrusted off-site 

hardware. Recent theoretical breakthroughs demonstrated 

the existence of Fully Homomorphic Encryption schemes 

[1,4]. However, FHE remains impractical because current 

implementations are many orders of magnitude too slow for 

practical use, and do not scale well to the very large keys 

and ciphertexts needed to assure a sufficient level of 

security. A new DARPA program (PROCEED) has as its 

focus the acceleration of various aspects of the FHE 

concept toward practical implementation and use. 

In this paper we present early work on our SIPHER project, 

an element of the PROCEED program, whose goal is to 

demonstrate FHE implementations that improve the state of 

the art by many orders of magnitude. As part of our activity 

we are developing a set of hardware primitives to accelerate 

FHE implementations based on lattice problems [3]. As an 

important aspect of our design methodology we use a state 

of the art tool-chain offered by the Mathworks to develop 

FPGA circuits from Simulink Models.  We initially develop 

prototype descriptions in Matlab that we re-implement in a 

stream oriented, hardware implementable manner in 

Simulink. The operations of the implementations are 

compared to verify correctness. A conversion from 

Simulink to VHDL is done in a completely automated 

fashion using Mathwork’s HDL coder.  This tool chain 

provides us the means to develop our primitives, including 

cyclic VHDL based FPGA prototyping, much faster than 

traditional methods. 

Fully and Somewhat Homomorphic 

Encryption 
Fully Homomorphic Encryption (FHE) holds the promise to 

securely run arbitrary computations over encrypted data on 

untrusted computation hosts [4].  The general FHE concept 

of operations is that sensitive data is encrypted with a 

public key, then sent to an untrusted computation host, 

which can perform arbitrary computations on the encrypted 

data without first needing to decrypt it.  It has been shown 

to be theoretically possible to evaluate arbitrary programs 

using just two special purpose FHE operations, EvalAdd 

and EvalMult, which roughly correspond to bitwise XOR 

and AND gates operating on encrypted bits.  A sequence of 

these operations is run against the encrypted data, resulting 

in an encryption of the output of the original program run 

on the unencrypted data.  This encrypted result can then be 

sent back to the original client, who decrypts the result 

using its secret key.  The encrypted data is protected at all 

times with reasonable security guarantees based on 

computational hardness results.   

FHE enables more secure and private computation, but to 

be effective there needs to be multiple orders of magnitude 

efficiency improvements before it can be practical. Known 

FHE schemes are highly inefficient partly because they are 

―noisy‖ - the encryption schemes’ ciphertext is a function 

not only of the plaintext and encryption keys but also of a 

noise term.  The amount of noise in a ciphertext rapidly 

increases as the EvalAdd and EvalMult operations are 

performed, and after too many such operations there is too 

much noise to correctly decrypt the ciphertext.  To run 

larger numbers of EvalAdd and EvalMult operations, FHE 

schemes typically address the accumulation of noise with a 

very computationally expensive ―recryption‖ operation that 

is periodically run on intermediate ciphertexts to keep the 

noise at a level that still permits decryption. 

A Somewhat Homomorphic Encryption (SHE) scheme 

supports several (but not unlimited) EvalMult and EvalAdd 

operations while preserving the correctness of decryption. 

In other words, SHE can schemes support secure 

computation for only a small subset of programs.  Our 

development approach is to select an efficient 

implementation of an SHE scheme which can be converted 

into a full FHE scheme with the addition of a recryption 

(noise reduction) operation and/or other supporting 

modifications.  This enables us to incrementally develop 

SHE results using modest initial resources. 

Although there have been some initial FHE 

implementations [1], there have been no practical 

implementations that can be used for effective general 

computation. Current designs of FHE schemes rely on 

operations (i.e. modular arithmetic with an enormous 

modulus) that are inefficient on standard CPU architectures 

and which are too memory intensive. For convenience all of 

these previous implementations have been limited by their 

focus on CPUs and do not take advantage of specialized 

parallel computation hardware like FPGAs. 



Figure 1 shows our vision for the layered services we 

provide in our FHE implementation.  There are software 

interfaces for implementations of the basic FHE operations 

(KeyGen, Encrypt, EvalAdd, EvalMult, Recrypt, Decrypt) 

as a primitive basis for constructing more general 

applications on encrypted data.  Our approach to the FHE 

primitives is based on the highly efficient lattice-based 

techniques developed by one of our investigators [3], which 

can be implemented with only a handful of core 

mathematical primitive operations (see Figure 2).  Many of 

these operations are closely related to well-understood 

operations, such as Fast Fourier Transforms, which we are 

targeting for efficient implementations on FPGAs.  The 

EvalAdd and EvalMult operations for example are simply 

element wise vector adds and multiplies taken modulo some 

particular prime integer q. These are trivial to express using 

Matlab:  c = mod(a+b, q) and c = mod(a.*b, q).   

We are leveraging previous work on signal processing 

implementations to implement the primitives (and 

consequently the FHE scheme) as circuits on FPGAs.  The 

FPGAs provide highly cost-effective parallelism. 

One of our primary primitive operations is the Chinese 

Remainder Transform (CRT). The CRT is mathematically 

similar to the Discrete Fourier Transform, but implemented 

using modular integer (instead of complex) arithmetic. 

Figure 3 shows the CRT implementation we are working 

with that is structurally very similar to the familiar 

processing of multi-dimensional signal data. The 

similarities of our primitives with well understood signal-

processing operations that have been efficiently 

implemented in FPGAs give us confidence toward 

developing efficient and scalable FPGA implementations of 

the primitives.  

The FFT operation in Figure 4 is similar to the standard 

FFT [2], except all operations are done in modulo q 

arithmetic.  We were able to take Mathwork’s example 

Simulink streaming FFT model (Figure 4), slightly modify 

the ordering of the output, and easily change from complex 

to integer arithmetic simply by altering the input and 

twiddle factor data types.  Converting to modular arithmetic 

is also straightforward. 

 

Figure 1: Conceptual diagram of system. 

 

 

Figure 2: Primitives for a SHE scheme. 

 

 
Figure 3: Internal Structure of CRT Primitive showing similarity 

to signal processing data flow. 

 
Figure 4: Simulink model for streaming FFT.  



To implement the modular arithmetic efficiently in 

hardware we have taken advantage of the Montgomery 

Reduction method [5], which allows one to express mod q 

operations in a larger basis r, which can be a power of two. 

So while the bits required to represent the integers have 

grown, all arithmetic operations now are allowed to wrap 

around on overflow, eliminating the need to do a costly 

modular reduction operation in the hardware. We 

implement the Montgomery reduction method in Simulink 

using the fixed point tool box (Figure 5).  The additional 

complexity this adds to the Simulink model for our ring 

operations is trivial. Figure 6 shows the Montgomery 

reduction steps in Red and Blue.  Red steps convert to the 

Montgomery space, and are done once for each input. Any 

number of additions can be done without the need for a 

reduction step. Each multiply requires one reduction step. A 

final reduction step converts back into the original mod q 

representation. Our modified FFT implementation requires 

pre-computation of the twiddle factors in Montgomery 

representation (no real time impact), one reduction step for 

each input sample, one reduction for each output sample 

and one reduction at the output of each butterfly 

multiplication. Since all reduction is done using a pipelined 

approach, there is no additional computation time added 

(just latency).  

Interim Results 
Our presentation will include examples of our primitives 

coded in Matlab and Simulink and examples of VHDL code 

generated by the HDL coder. We will also be able to show 

timing results from Modelsim based simulations of the 

resulting code.   
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Figure 5: Simulink model for Montgomery Reduction 

 

 

Figure 6: Simulink model for Ring Multiply-Add 

 


