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e Motivation for Fully Homomorphic Encryption
e Our encryption scheme and primitives

« Why use an FPGA, and why Simulink?
 Examples

 Where do we go next?



What is Fully Homomorphic Encryption?

 DoD is excited about Cloud Computing, but needs
guaranteed security!

— Requirement: Send high-value data to an un-trusted second
party for processing, not just storage.

— No decryption of data allowed at any point!
 Example:

— Need to deconflict airspace for multiple missions, but cannot
share the mission tracks due to security requirements (different
countries involved).

* Theoretical breakthrough by Craig Gentry (IBM) 2009*

— Presented the first Fully Homomorphic Encryption (FHE) scheme
that allows “computation” on encrypted variables without
Intermediate decryption.

— Computation means multiple individual operations (and/or) on
encrypted data = we are very far from full “programs”

— Led to a rapid development of improved techniques.

. . . . 2 heo eorgia
*C. Gentry. Fully Homomorphic Encryption Using Ideal Lattices. STOC, 20009. BBaNyT:chnoI:Igies TR



FHE comes with great cost!

« FHE schemes allow “unlimited” computation on
encrypted data.

e Based on “computationally hard” stochastic
lattice theory problems.

— Stochastics introduce noise term that grows with the
number of operations applied to the encrypted data.
 Too much noise - can no longer decrypt the data.

* Requires a recrypt ( “decryption/encryption”) operation built
out of FHE operations to “clean” the intermediate results of
noise.

— Leads to a HUGE computational burden
« Current benchmarks on workstation PC - 30 sec / gate.
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Our goal: Build an FHE co-processor

 Reduce the time necessary for FHE computation by
— Using more efficient algorithms
— Hardware implementation of FHE primitives using FPGA

e Our approach:
— Define a “Somewhat” HE scheme

— Specify a maximum number of operations on the data
before noise growth makes decryption impossible.

— No need for recrypt = Much less burdensome
— Uses all the same primitives as FHE

* Do this in a flexible and scalable way so we can
keep up with the theory

llay‘l'heon Georgia
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Our chosen SHE scheme

e Based on “Learning with Errors over Rings”™*
— also stochastic lattice based

« Uses Chinese Remainder Transform (CRT) to
simplify structure of “add” and “multiply” operations

— Analogous to Fourier Transform pair:
convolution < multiplication
 Formulation can encode and manipulate arrays of
small integers or bits
— Remainder of talk focuses on arrays of bits
— Addition in the ring 2 XOR
— Multiplication in the ring 2> AND
— Can support unlimited # XOR, limited # AND operations

*V. Lyubashevsky, C. Peikert, and O. Regev. "On ideal lattices and learning with errors over rings".
In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, Raytheon  ccorgia

BBN Technologies Tech

V 6110 of Lecture Notes in Computer Science, Ch 1, PP 1-23. Springer Berlin / Heidelberg, Berlin.



Baseline SHE Primitives

Primitives that are done once

KeyGen: Encrypt: Decrypt:

Noise Sample in the Ring Noise Sample inthe ~ S€cret Key sk

Ring (in CRT rep.) ciphertext c

!

CRT CRT Ring Addition and
—> Secret Key sk Multiplication Circuit

v
[ Ring Addition and } pk Ring Addition and
Multiplication Circuit message Multiplication Circuit
\:

Public Key pk Ciphertext c message m

Primitives that are done multiple times

Eval. Add: Eval. Mult.:

Cy Ring c, €2
Addition Ring Multiplication
Circuit Ciri:luit
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why FPGA? Efficiency in computation!

« All primitives are computed on arrays modulo a large prime g

— One selects the degree parameter (number of EvalMul operations
supported) and a security parameter 6 (encryption “hardness”)

— Generates parameters n (size of the plaintext vectors) and g.
* One bit encrypted into 2*width.q bits.
e Large bit-width modulo arithmetic is inefficient on a CPU

Degree Fair Encryption Good Encryption

(SSN) (Credit Card)
4 1024
5 256 41 1024 46
6 256 50 2048 59
7 256 58 2048 68
8 256 66 2048 78
9 512 79 2048 88 e e



Why Matlab/Simulink?

« Matlab fixed point library allows us to quickly code
our SHE benchmarks in a high level language.

— LWE uses “signal processing” constructs:
e CRT for n=2% is based on FFT(x)%oq
* Noise selection uses discretized Gaussian random number pool

— Theory is constantly being improved upon!

 Qur code life is about 3-4 months before new innovations
require rewrite

e Simulink HDL coder lets us code our primitives
directly in a data flow diagram, in parameterized
form.

— One diagram for all combinations of n and g

e Co-verification of the primitives in Matlab, Simulink
and VHDL is easy!
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Example of Similarity with Signal Processing: CRT 10
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Example: Simulink RingMultiplyAdd (a.*b+c)%q
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Implements (a*b+c)%q Utilizes Montgomery Reduction -
standard crypto technique for repeated
modulo arithmetic
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Reduce “up” to Montgomery “space”

 Montgomery reduction doubles required bit-width...

...but now Product and Add are Simulink primitives with rounding set
to “wrap” - no trial division needed for modulo

» Model is serialized, iterated for n values.
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Example: RingButterfly VHDL generation

Implements (a*b)%q and ((a-b)*c)%gq using Montgomery Reduction Simulink butterfly
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*Butterfly is the core component of CRT (FFT)
«Simulink tools generated VHDL code that
compiled in ACTEL tool chain unedited!

Lo < —T—> » Simulink generated test benches that ran in
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Example: Pipelined FFT structure
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« Can cascade stages for
larger FFTs

 Each Stage uses same
library model with a
Simulink parameterized processing stage  (J|fferent param eter
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Conversion from complex to ring arithmetic

8 pt FFT model provided by Mathworks

 NO major changes!!

coureane \ _ . ;
Montgomery reductions R_epla_lce Input V_a”ab'e
with fixed point integers
mod g

— Twiddle factors replaced
with modulo versions and
stored in Montgomery
form

— Add Montgomery blocks
to input and output

— Complex butterfly block
replaced with ringButterfly
block

 Equivalent to
mod(fft(x),q)

a
a+b
b ringButterfly
\ (a-b).*c
c

=

0 navl'mn Georgia
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Where do we go next?

e Go faster

— Current primitives have no pipelining, so they are slow (e.g. butterfly
has 88 ns cycle time on ACTEL A3PE)

 typical of first cut code - get it to work right, then get it to work fast
— Can use Simulink tools for adding pipelining

« Go bigger

— Simulink is limited to 128 bit word widths.
» Impacts multipliers in Montgomery Stages when q larger than 32 bits

 Investigating Montgomery Multiplier (pipelined modulo multiply) and breaking
multiplies into smaller chunks

— Build full CRT and CRT-! models and register architecture

e Build in more functionality

— Next year’s goal is to build complete SHE processing unit on Xlinx
FPGA
» Registers, and simple ALU-like instruction set
— Move towards FHE
» Algorithms are constantly improving, reducing required computational load

llayl'heon Georgia
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Special Thanks to the Mathworks Team

« Jeff Miller, Brian Ogilvie, Jared Schuler

« Mathworks second pilot program with BBN

— First pilot program focused on Matlab to Blackfin code
generation
e Taught us how to become “power users”

— Provided sample code for Montgomery Methods
using fixed point toolbox

— Provided sample models for HDL friendly serialized
Ring Ops and basic streaming FFT

— (Bi)Weekly webconferences really bootstrapped our
program
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