SIPHER: Scalable Implementation of
Primitives for Homomorphic EncRyption

FPGA implementation using Simulink

Dave Cousins,
HPEC 2011 Kurt Rohloff, Rick Schantz: BBN
Sept 21, 2011 {dcousins, krohloff, schantz,}@bbn.com
Chris Peikert: Georgia Tech
cpeikert@cc.gatech.edu

Sponsored by Air Force Research Laboratory (AFRL) Contract No.
FA8750-11-C-0098. The views expressed are those of the authors and do

not reflect the official policy or position of the Department of Defense or the nawneon Georgial =i
U.S. Government. Distribution Statement “A” (Approved for Public Release, . W ay? |
iz BBN Technologies | ©"Techiclogy

Distribution Unlimited).

Outline

e Motivation for Fully Homomorphic Encryption
e Our encryption scheme and primitives

« Why use an FPGA, and why Simulink?
 Examples

 Where do we go next?

What is Fully Homomorphic Encryption?

 DoD is excited about Cloud Computing, but needs
guaranteed security!

— Requirement: Send high-value data to an un-trusted second
party for processing, not just storage.

— No decryption of data allowed at any point!
 Example:

— Need to deconflict airspace for multiple missions, but cannot
share the mission tracks due to security requirements (different
countries involved).

* Theoretical breakthrough by Craig Gentry (IBM) 2009*

— Presented the first Fully Homomorphic Encryption (FHE) scheme
that allows “computation” on encrypted variables without
Intermediate decryption.

— Computation means multiple individual operations (and/or) on
encrypted data = we are very far from full “programs”

— Led to a rapid development of improved techniques.

. . . . 2 heo eorgia
*C. Gentry. Fully Homomorphic Encryption Using Ideal Lattices. STOC, 20009. BBaNyT:chnoI:Igies TR

FHE comes with great cost!

« FHE schemes allow “unlimited” computation on
encrypted data.

e Based on “computationally hard” stochastic
lattice theory problems.

— Stochastics introduce noise term that grows with the
number of operations applied to the encrypted data.
 Too much noise - can no longer decrypt the data.

* Requires a recrypt (“decryption/encryption”) operation built
out of FHE operations to “clean” the intermediate results of
noise.

— Leads to a HUGE computational burden
« Current benchmarks on workstation PC - 30 sec / gate.

llayl'henn Georgia
BBN Technologies Tech

Our goal: Build an FHE co-processor

 Reduce the time necessary for FHE computation by
— Using more efficient algorithms
— Hardware implementation of FHE primitives using FPGA

e Our approach:
— Define a “Somewhat” HE scheme

— Specify a maximum number of operations on the data
before noise growth makes decryption impossible.

— No need for recrypt = Much less burdensome
— Uses all the same primitives as FHE

* Do this in a flexible and scalable way so we can
keep up with the theory

llay‘l'heon Georgia
BBN Technologies Tec

Our chosen SHE scheme

e Based on “Learning with Errors over Rings”™*
— also stochastic lattice based

« Uses Chinese Remainder Transform (CRT) to
simplify structure of “add” and “multiply” operations

— Analogous to Fourier Transform pair:
convolution < multiplication
 Formulation can encode and manipulate arrays of
small integers or bits
— Remainder of talk focuses on arrays of bits
— Addition in the ring 2 XOR
— Multiplication in the ring 2> AND
— Can support unlimited # XOR, limited # AND operations

*V. Lyubashevsky, C. Peikert, and O. Regev. "On ideal lattices and learning with errors over rings".
In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, Raytheon ccorgia

BBN Technologies Tech

V 6110 of Lecture Notes in Computer Science, Ch 1, PP 1-23. Springer Berlin / Heidelberg, Berlin.

Baseline SHE Primitives

Primitives that are done once

KeyGen: Encrypt: Decrypt:

Noise Sample in the Ring Noise Sample inthe ~ S€cret Key sk

Ring (in CRT rep.) ciphertext c

!

CRT CRT Ring Addition and
—> Secret Key sk Multiplication Circuit

v
[Ring Addition and } pk Ring Addition and
Multiplication Circuit message Multiplication Circuit
\:

Public Key pk Ciphertext c message m

Primitives that are done multiple times

Eval. Add: Eval. Mult.:

Cy Ring c, €2
Addition Ring Multiplication
Circuit Ciri:luit
Cie2 Ci#) Raytheon | ceorgia)cci

BBN Technologies Tec

why FPGA? Efficiency in computation!

« All primitives are computed on arrays modulo a large prime g

— One selects the degree parameter (number of EvalMul operations
supported) and a security parameter 6 (encryption “hardness”)

— Generates parameters n (size of the plaintext vectors) and g.
* One bit encrypted into 2*width.q bits.
e Large bit-width modulo arithmetic is inefficient on a CPU

Degree Fair Encryption Good Encryption

(SSN) (Credit Card)
4 1024
5 256 41 1024 46
6 256 50 2048 59
7 256 58 2048 68
8 256 66 2048 78
9 512 79 2048 88 e e

Why Matlab/Simulink?

« Matlab fixed point library allows us to quickly code
our SHE benchmarks in a high level language.

— LWE uses “signal processing” constructs:
e CRT for n=2% is based on FFT(x)%oq
* Noise selection uses discretized Gaussian random number pool

— Theory is constantly being improved upon!

 Qur code life is about 3-4 months before new innovations
require rewrite

e Simulink HDL coder lets us code our primitives
directly in a data flow diagram, in parameterized
form.

— One diagram for all combinations of n and g

e Co-verification of the primitives in Matlab, Simulink
and VHDL is easy!

llayl'henn Georgia
BBN Technologies Tech

Example of Similarity with Signal Processing: CRT 10

h

N/M’ _
ANEA
AN
N

h

>(N/M*)x(N/¢(r))

Input vector size 1xN

perumute

CRTr

Tij

N/M'’
[N "

0

=N

““
AN\ oL Q—

O Tij Tij Tij " Tij

CRTr %
1

N Point permutation

Fortunately for N=2"k, CRTr = eye()

4

4

N/M’-1

A

Cutpuc vector size (N/IV7)x(M7)
veruniute => 1xN

i

So the circuit becomes a vector element-wise multiply and an FFT

Legend:

Input /output vector

Const Matrix, variable vector Mult or FFT

1:1 reindexing

Constant Matrix, variable vector Mult

Example: Simulink RingMultiplyAdd (a.*b+c)%q

11

Implements (a*b+c)%q Utilizes Montgomery Reduction -
standard crypto technique for repeated
modulo arithmetic

0.2*base_hits,0)

Mon

Eé“‘" Iy)

aTimesbPluscmodg

ery_ms

Down

ufix3i ufixg2
a Fd
Montgomery 0:1 U
Jomen 1P *montgomery ufix124 15y ufixg2 7, UfixE2
o product 2 Mn:%ﬁxdd
L Montgomery 2:1 Dow
ufix31 ufixé2 montgomery product gomeny_<-1_ det(
b Montgomer'_f 01 Up1 Multiplication requires
- - an additional reduction
ufix31 ufixg2
C Fd
/Mmgﬁmery_ﬂﬁtsg\ /'
/
’ b et I Cut1 G2 Siice ufix31 2
Int Qut1 11 > base_bits-1 downto 0
Gain monirecuceZsim \ Bit Slice

slice
ase_pits-1 downto

Bit Slice1

-

ufix63

Reduce “up” to Montgomery “space”

 Montgomery reduction doubles required bit-width...

...but now Product and Add are Simulink primitives with rounding set
to “wrap” - no trial division needed for modulo

» Model is serialized, iterated for n values.

Raytheon

BBN Technologies

Reduce “down” from Montgomery space

Tec

Georgial = s
rgh'

Example: RingButterfly VHDL generation

Implements (a*b)%q and ((a-b)*c)%gq using Montgomery Reduction Simulink butterfly
/ D > »(
In1 - Out1
ain Meodule Add
— aplusbmodq_out fixclt(0,2 base_bits,0)
b_in @
In2
inusbtimescmodq_out hMontgomery
C_ﬁ{n T’!—. produet
Ll
ringButterfly
(@D,
VHDL Codegen In3
. Modulo_subtract
= b In121:0] . s Montgomery product T o
\ nzprg OEO 'T'ru‘-l - 0Ut113:0] St 1143 cg e U121 0] s 0] o= 4—:| I
uModulo_subtract Mprigomery,_product u_Montgomery_2_1_Down Az

¥

\
In1

B °] i = II

1 0} Relabonal

p1: Operator

>
WUH [21:0] 2 q

Constant? |

VH DL buttel’fly A3 ddt

‘Jlr‘;l i Simulink modulo subtract

wmi_mi[21:0)

*Butterfly is the core component of CRT (FFT)
«Simulink tools generated VHDL code that
compiled in ACTEL tool chain unedited!

Lo < —T—> » Simulink generated test benches that ran in

e
Tkt bn:.l man ogapdorn] retop

“ VHDL modulo subtract

Modelsim unedited ! Raytheon | coogim o

BBN Technologies = @ Techriciogy

13

Example: Pipelined FFT structure

T : :
== _L: T S T = ® SCalabl.e radix 2 FFT is
CCCCC ~-=1 the basis for CRT

nnnnnnnnn

Constant! et

L] . - L]
== ' . DatalstriamsI In 2 points
rrrrrrrrr er clock cycle
'@I p y

ompare To Workspaced

C—bfeed o0
Butterfl
Botl — q2s (;n'ﬁ{—
adr_i adr_o
In3 2]

butterfly_intermediate1

« Can cascade stages for
larger FFTs

 Each Stage uses same
library model with a
Simulink parameterized processing stage (J|fferent param eter

In1 1
Qut1
Delay1
Cutl

@ L | | L -
Ll

bit =log2(W’ Logical
it =log2(W) ator

O

In1

O
W delay2

=D >

2 l stage_phasor

bf1twiddle
no delays incumred here

Simulink complex butterfly stage

ma‘.chcelaxQ
Simulink shuffle stage BBN Technologies | s

14

Conversion from complex to ring arithmetic

8 pt FFT model provided by Mathworks

 NO major changes!!

coureane \ _ . ;
Montgomery reductions R_epla_lce Input V_a”ab'e
with fixed point integers
mod g

— Twiddle factors replaced
with modulo versions and
stored in Montgomery
form

— Add Montgomery blocks
to input and output

— Complex butterfly block
replaced with ringButterfly
block

 Equivalent to
mod(fft(x),q)

a
a+b
b ringButterfly
\ (a-b).*c
c

=

0 navl'mn Georgia
Twiddles replaced BBN Technologies | - Teeh

Where do we go next?

e Go faster

— Current primitives have no pipelining, so they are slow (e.g. butterfly
has 88 ns cycle time on ACTEL A3PE)

 typical of first cut code - get it to work right, then get it to work fast
— Can use Simulink tools for adding pipelining

« Go bigger

— Simulink is limited to 128 bit word widths.
» Impacts multipliers in Montgomery Stages when q larger than 32 bits

 Investigating Montgomery Multiplier (pipelined modulo multiply) and breaking
multiplies into smaller chunks

— Build full CRT and CRT-! models and register architecture

e Build in more functionality

— Next year’s goal is to build complete SHE processing unit on Xlinx
FPGA
» Registers, and simple ALU-like instruction set
— Move towards FHE
» Algorithms are constantly improving, reducing required computational load

llayl'heon Georgia
BBN Technologies Tech

Special Thanks to the Mathworks Team

« Jeff Miller, Brian Ogilvie, Jared Schuler

« Mathworks second pilot program with BBN

— First pilot program focused on Matlab to Blackfin code
generation
e Taught us how to become “power users”

— Provided sample code for Montgomery Methods
using fixed point toolbox

— Provided sample models for HDL friendly serialized
Ring Ops and basic streaming FFT

— (Bi)Weekly webconferences really bootstrapped our
program

	Slide Number 1
	Outline
	What is Fully Homomorphic Encryption?
	FHE comes with great cost!
	Our goal: Build an FHE co-processor
	Our chosen SHE scheme
	Baseline SHE Primitives
	Why FPGA? Efficiency in computation!
	Why Matlab/Simulink?
	Example of Similarity with Signal Processing: CRT
	Example: Simulink RingMultiplyAdd (a.*b+c)%q
	Example: RingButterfly VHDL generation
	Example: Pipelined FFT structure
	Conversion from complex to ring arithmetic
	Where do we go next?
	Special Thanks to the Mathworks Team

