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Outline 

• Motivation for Fully Homomorphic Encryption 

• Our encryption scheme and primitives 

• Why use an FPGA, and why Simulink? 

• Examples 

• Where do we go next?  
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What is Fully Homomorphic Encryption? 

• DoD is excited about Cloud Computing, but needs 
guaranteed security! 
– Requirement: Send high-value data to an un-trusted second 

party for processing, not just storage. 
– No decryption of data allowed at any point! 

• Example:  
– Need to deconflict airspace for multiple missions, but cannot 

share the mission tracks due to security requirements (different 
countries involved).  

• Theoretical breakthrough by Craig Gentry (IBM) 2009* 
– Presented the first Fully Homomorphic Encryption (FHE) scheme 

that allows “computation” on encrypted variables without 
intermediate decryption. 

– Computation means multiple individual operations (and/or) on 
encrypted data  we are very far from full “programs” 

– Led to a rapid development of improved techniques. 

*C. Gentry. Fully Homomorphic Encryption Using Ideal Lattices. STOC, 2009. 
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FHE comes with great cost! 

• FHE schemes allow “unlimited” computation on 
encrypted data. 

• Based on “computationally hard” stochastic 
lattice theory problems. 
– Stochastics introduce noise term that grows with the 

number of operations applied to the encrypted data. 
• Too much noise  can no longer decrypt the data. 

• Requires a recrypt ( “decryption/encryption”) operation built 
out of FHE operations to “clean” the intermediate results of 
noise. 

– Leads to a HUGE computational burden 
• Current benchmarks on workstation PC  30 sec / gate. 
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Our goal: Build an FHE co-processor 

• Reduce the time necessary for FHE computation by 
– Using more efficient algorithms 
– Hardware implementation of FHE primitives using FPGA 

• Our approach: 
– Define a “Somewhat” HE scheme 
– Specify a maximum number of operations on the data 

before noise growth makes decryption impossible. 
– No need for recrypt  Much less burdensome 
– Uses all the same primitives as FHE 

• Do this in a flexible and scalable way so we can 
keep up with the theory 
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Our chosen SHE scheme 

• Based on “Learning with Errors over Rings”* 
– also stochastic lattice based 

• Uses Chinese Remainder Transform (CRT) to 
simplify structure of  “add” and “multiply” operations 
– Analogous to Fourier Transform pair:  

convolution  multiplication 

• Formulation can encode and manipulate arrays of 
small integers or bits 
– Remainder of talk focuses on arrays of bits 
– Addition in the ring XOR 
– Multiplication in the ring AND 
– Can support unlimited # XOR, limited # AND operations 

 

 
*V. Lyubashevsky, C. Peikert, and O. Regev. "On ideal lattices and learning with errors over rings".  
In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010,  
V 6110 of Lecture Notes in Computer Science, Ch 1, PP 1-23. Springer Berlin / Heidelberg, Berlin. 
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Baseline SHE Primitives 
7 

c1 c2 Ring 
Addition 
Circuit 

c1+2 

Eval. Add: 
c1 c2 

Ring Multiplication 
Circuit 

c1*2 

Eval. Mult.: 

Noise Sample in the Ring 

Ring Addition and 
Multiplication Circuit 

KeyGen: 

Public Key pk 

Secret Key sk 

CRT 

Noise Sample in the 
Ring 

Ring Addition and 
Multiplication Circuit 

Encrypt: 

Ciphertext c 

pk 

CRT 

message 

Ring Addition and 
Multiplication Circuit 

Secret Key sk 
(in CRT rep.) ciphertext c 

CRT-1 

Decrypt: 

message m 

Primitives that are done once 

Primitives that are done multiple times 



Why FPGA?  Efficiency in computation! 

• All primitives are computed on arrays modulo a large prime q 
– One selects the degree parameter (number of EvalMul operations 

supported) and a security parameter δ (encryption “hardness”) 
– Generates parameters n (size of the plaintext vectors) and q. 

• One bit encrypted into 2*width.q bits. 
• Large bit-width modulo arithmetic is inefficient on a CPU 

Degree Fair Encryption  
(SSN) 

Good Encryption 
(Credit Card) 

n q # bits n q # bits 

4 128 31  1024 37 

5 256 41 1024 46 

6 256 50 2048 59 

7 256 58 2048 68 

8 256 66 2048 78 

9 512 79 2048 88 
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Why Matlab/Simulink? 
• Matlab fixed point library allows us to quickly code 

our SHE benchmarks in a high level language. 
– LWE uses “signal processing” constructs: 

• CRT for n=2k is based on FFT(x)%q 

• Noise selection uses discretized Gaussian random number pool 

– Theory is constantly being improved upon! 
• Our code life is about 3-4 months before new innovations 

require rewrite 

• Simulink HDL coder lets us code our primitives 
directly in a data flow diagram, in parameterized 
form. 
– One diagram for all combinations of n and q 

• Co-verification of the primitives in Matlab, Simulink 
and VHDL is easy! 
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Fortunately for N=2^k, CRTr  eye() 
So the circuit becomes a vector element-wise multiply and an FFT  
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Example: Simulink RingMultiplyAdd (a.*b+c)%q 

• Montgomery reduction doubles required bit-width… 
     …but now Product and Add are Simulink primitives with rounding set 

to “wrap”  no trial division needed for modulo 
• Model is serialized, iterated for n values. 

Reduce “down” from Montgomery space 
Reduce “up” to Montgomery “space” 

Multiplication requires  
an additional reduction 

Utilizes Montgomery Reduction  
standard crypto technique for repeated 
modulo arithmetic 
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Example: RingButterfly VHDL generation 
Simulink butterfly 

Simulink modulo subtract 

VHDL butterfly 

VHDL modulo subtract 

•Butterfly is the core component of CRT (FFT) 
•Simulink tools generated VHDL code that 
compiled in ACTEL tool chain unedited! 
• Simulink generated test benches that ran in 
Modelsim unedited ! 

VHDL Codegen 
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Example: Pipelined FFT structure 
• Scalable radix 2 FFT is 

the basis for CRT 

• Data streams in 2 points 
per clock cycle 

• Can cascade stages for 
larger FFTs 

• Each stage uses same   
library model with a 
different parameter 

 

Simulink 512 pt streaming FFT 

Simulink parameterized processing stage 

Simulink shuffle stage Simulink complex butterfly stage 
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Conversion from complex to ring arithmetic 

• No major changes!! 
– Replace input variable 

with fixed point integers 
mod q 

– Twiddle factors replaced 
with modulo versions and 
stored in Montgomery 
form 

– Add Montgomery blocks 
to input and output  

– Complex butterfly block 
replaced with ringButterfly 
block 

• Equivalent to 
mod(fft(x),q) 
 

8 pt FFT model provided by Mathworks 

Montgomery reductions 

ringButterfly 

Twiddles replaced 
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Where do we go next? 
• Go faster 

– Current primitives have no pipelining, so they are slow (e.g. butterfly 
has 88 ns cycle time on ACTEL A3PE)  

• typical of first cut code  get it to work right, then get it to work fast 
– Can use Simulink tools for adding pipelining 

• Go bigger 
– Simulink is limited to 128 bit word widths. 

• Impacts multipliers in Montgomery Stages when q larger than 32 bits 
• Investigating Montgomery Multiplier (pipelined modulo multiply) and breaking 

multiplies into smaller chunks 
– Build full CRT and CRT-1 models and register architecture 

• Build in more functionality 
– Next year’s goal is to build complete SHE processing unit on Xlinx 

FPGA 
• Registers, and simple ALU-like instruction set 

– Move towards FHE 
• Algorithms are constantly improving, reducing required computational load 

 

15 



Special Thanks to the Mathworks Team 

• Jeff Miller, Brian Ogilvie, Jared Schuler 
• Mathworks second pilot program with BBN 

– First pilot program focused on Matlab to Blackfin code 
generation 

• Taught us how to become “power users” 
– Provided sample code for Montgomery Methods 

using fixed point toolbox  
– Provided sample models for HDL friendly serialized 

Ring Ops and basic streaming FFT  
– (Bi)Weekly webconferences really bootstrapped our 

program 
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