
SIPHER: Scalable Implementation of
Primitives for Homomorphic EncRyption

FPGA implementation using Simulink

Dave Cousins,
Kurt Rohloff, Rick Schantz: BBN
{dcousins, krohloff, schantz,}@bbn.com
Chris Peikert: Georgia Tech
cpeikert@cc.gatech.edu

HPEC 2011
Sept 21, 2011

Sponsored by Air Force Research Laboratory (AFRL) Contract No.
FA8750-11-C-0098. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense or the
U.S. Government. Distribution Statement “A” (Approved for Public Release,
Distribution Unlimited).

1

Outline

• Motivation for Fully Homomorphic Encryption

• Our encryption scheme and primitives

• Why use an FPGA, and why Simulink?

• Examples

• Where do we go next?

2

What is Fully Homomorphic Encryption?

• DoD is excited about Cloud Computing, but needs
guaranteed security!
– Requirement: Send high-value data to an un-trusted second

party for processing, not just storage.
– No decryption of data allowed at any point!

• Example:
– Need to deconflict airspace for multiple missions, but cannot

share the mission tracks due to security requirements (different
countries involved).

• Theoretical breakthrough by Craig Gentry (IBM) 2009*
– Presented the first Fully Homomorphic Encryption (FHE) scheme

that allows “computation” on encrypted variables without
intermediate decryption.

– Computation means multiple individual operations (and/or) on
encrypted data  we are very far from full “programs”

– Led to a rapid development of improved techniques.

*C. Gentry. Fully Homomorphic Encryption Using Ideal Lattices. STOC, 2009.

3

FHE comes with great cost!

• FHE schemes allow “unlimited” computation on
encrypted data.

• Based on “computationally hard” stochastic
lattice theory problems.
– Stochastics introduce noise term that grows with the

number of operations applied to the encrypted data.
• Too much noise  can no longer decrypt the data.

• Requires a recrypt (“decryption/encryption”) operation built
out of FHE operations to “clean” the intermediate results of
noise.

– Leads to a HUGE computational burden
• Current benchmarks on workstation PC  30 sec / gate.

4

Our goal: Build an FHE co-processor

• Reduce the time necessary for FHE computation by
– Using more efficient algorithms
– Hardware implementation of FHE primitives using FPGA

• Our approach:
– Define a “Somewhat” HE scheme
– Specify a maximum number of operations on the data

before noise growth makes decryption impossible.
– No need for recrypt  Much less burdensome
– Uses all the same primitives as FHE

• Do this in a flexible and scalable way so we can
keep up with the theory

5

Our chosen SHE scheme

• Based on “Learning with Errors over Rings”*
– also stochastic lattice based

• Uses Chinese Remainder Transform (CRT) to
simplify structure of “add” and “multiply” operations
– Analogous to Fourier Transform pair:

convolution  multiplication

• Formulation can encode and manipulate arrays of
small integers or bits
– Remainder of talk focuses on arrays of bits
– Addition in the ring XOR
– Multiplication in the ring AND
– Can support unlimited # XOR, limited # AND operations

*V. Lyubashevsky, C. Peikert, and O. Regev. "On ideal lattices and learning with errors over rings".
In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010,
V 6110 of Lecture Notes in Computer Science, Ch 1, PP 1-23. Springer Berlin / Heidelberg, Berlin.

6

Baseline SHE Primitives
7

c1 c2 Ring
Addition
Circuit

c1+2

Eval. Add:
c1 c2

Ring Multiplication
Circuit

c1*2

Eval. Mult.:

Noise Sample in the Ring

Ring Addition and
Multiplication Circuit

KeyGen:

Public Key pk

Secret Key sk

CRT

Noise Sample in the
Ring

Ring Addition and
Multiplication Circuit

Encrypt:

Ciphertext c

pk

CRT

message

Ring Addition and
Multiplication Circuit

Secret Key sk
(in CRT rep.) ciphertext c

CRT-1

Decrypt:

message m

Primitives that are done once

Primitives that are done multiple times

Why FPGA? Efficiency in computation!

• All primitives are computed on arrays modulo a large prime q
– One selects the degree parameter (number of EvalMul operations

supported) and a security parameter δ (encryption “hardness”)
– Generates parameters n (size of the plaintext vectors) and q.

• One bit encrypted into 2*width.q bits.
• Large bit-width modulo arithmetic is inefficient on a CPU

Degree Fair Encryption
(SSN)

Good Encryption
(Credit Card)

n q # bits n q # bits

4 128 31 1024 37

5 256 41 1024 46

6 256 50 2048 59

7 256 58 2048 68

8 256 66 2048 78

9 512 79 2048 88

8

Why Matlab/Simulink?
• Matlab fixed point library allows us to quickly code

our SHE benchmarks in a high level language.
– LWE uses “signal processing” constructs:

• CRT for n=2k is based on FFT(x)%q

• Noise selection uses discretized Gaussian random number pool

– Theory is constantly being improved upon!
• Our code life is about 3-4 months before new innovations

require rewrite

• Simulink HDL coder lets us code our primitives
directly in a data flow diagram, in parameterized
form.
– One diagram for all combinations of n and q

• Co-verification of the primitives in Matlab, Simulink
and VHDL is easy!

9

O
ut

pu
t v

ec
to

r
si

ze
 (N

/M
’)x

(M
’)

pe
ru

m
ut

e
=>

 1
xN

DFT

0

N/φ(r)

DFT

0

N/φ(r)

DFT

0

N/φ(r)

DFT
DFT

DFT

Example of Similarity with Signal Processing: CRT

DFTm’

0

Legend:

Input /output vector Constant Matrix, variable vector Mult

1:1 reindexing

Constant

Const Matrix, variable vector Mult or FFT

…

1
2

N/M’-1

N
 P

oi
nt

 p
er

m
ut

at
io

n

Tij Tij Tij Tij

CRTr

0

N/M’ N/M’

Tij Tij Tij Tij

CRTr

1

Tij Tij Tij Tij

CRTr

M’-1

In
pu

t v
ec

to
r

 s
iz

e
1x

N

pe
ru

m
ut

e=
>(

N
/M

’)x
(N

/φ
(r

))

Fortunately for N=2^k, CRTr  eye()
So the circuit becomes a vector element-wise multiply and an FFT

10

Example: Simulink RingMultiplyAdd (a.*b+c)%q

• Montgomery reduction doubles required bit-width…
 …but now Product and Add are Simulink primitives with rounding set

to “wrap”  no trial division needed for modulo
• Model is serialized, iterated for n values.

Reduce “down” from Montgomery space
Reduce “up” to Montgomery “space”

Multiplication requires
an additional reduction

Utilizes Montgomery Reduction 
standard crypto technique for repeated
modulo arithmetic

11

Example: RingButterfly VHDL generation
Simulink butterfly

Simulink modulo subtract

VHDL butterfly

VHDL modulo subtract

•Butterfly is the core component of CRT (FFT)
•Simulink tools generated VHDL code that
compiled in ACTEL tool chain unedited!
• Simulink generated test benches that ran in
Modelsim unedited !

VHDL Codegen

12

Example: Pipelined FFT structure
• Scalable radix 2 FFT is

the basis for CRT

• Data streams in 2 points
per clock cycle

• Can cascade stages for
larger FFTs

• Each stage uses same
library model with a
different parameter

Simulink 512 pt streaming FFT

Simulink parameterized processing stage

Simulink shuffle stage Simulink complex butterfly stage

13

Conversion from complex to ring arithmetic

• No major changes!!
– Replace input variable

with fixed point integers
mod q

– Twiddle factors replaced
with modulo versions and
stored in Montgomery
form

– Add Montgomery blocks
to input and output

– Complex butterfly block
replaced with ringButterfly
block

• Equivalent to
mod(fft(x),q)

8 pt FFT model provided by Mathworks

Montgomery reductions

ringButterfly

Twiddles replaced

14

Where do we go next?
• Go faster

– Current primitives have no pipelining, so they are slow (e.g. butterfly
has 88 ns cycle time on ACTEL A3PE)

• typical of first cut code  get it to work right, then get it to work fast
– Can use Simulink tools for adding pipelining

• Go bigger
– Simulink is limited to 128 bit word widths.

• Impacts multipliers in Montgomery Stages when q larger than 32 bits
• Investigating Montgomery Multiplier (pipelined modulo multiply) and breaking

multiplies into smaller chunks
– Build full CRT and CRT-1 models and register architecture

• Build in more functionality
– Next year’s goal is to build complete SHE processing unit on Xlinx

FPGA
• Registers, and simple ALU-like instruction set

– Move towards FHE
• Algorithms are constantly improving, reducing required computational load

15

Special Thanks to the Mathworks Team

• Jeff Miller, Brian Ogilvie, Jared Schuler
• Mathworks second pilot program with BBN

– First pilot program focused on Matlab to Blackfin code
generation

• Taught us how to become “power users”
– Provided sample code for Montgomery Methods

using fixed point toolbox
– Provided sample models for HDL friendly serialized

Ring Ops and basic streaming FFT
– (Bi)Weekly webconferences really bootstrapped our

program

16

	Slide Number 1
	Outline
	What is Fully Homomorphic Encryption?
	FHE comes with great cost!
	Our goal: Build an FHE co-processor
	Our chosen SHE scheme
	Baseline SHE Primitives
	Why FPGA? Efficiency in computation!
	Why Matlab/Simulink?
	Example of Similarity with Signal Processing: CRT
	Example: Simulink RingMultiplyAdd (a.*b+c)%q
	Example: RingButterfly VHDL generation
	Example: Pipelined FFT structure
	Conversion from complex to ring arithmetic
	Where do we go next?
	Special Thanks to the Mathworks Team

