Anti-Tamper in Open Architecture Systems

Michael Vai, Kyle Ingols, Josh Kramer, Ford Ennis, Michael Geis, Ted Lyszczarz, Rob Cunningham

HPEC 2011

20 September 2011

This work is sponsored by the Department of the Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

HPEC 2011-1 MMV 10/25/2011

- Background
 - Anti Tamper (AT)
 - Open Architecture System
- Open Architecture vs. AT
- Crucial Open AT Technologies
- Summary

- Discuss two key challenges in combining anti-tamper and open architecture systems
 - How can Anti-Tamper (AT) requirements be integrated into open-architecture systems and still maintain benefits of openness?
 - How can open-architectures be applied to AT itself to improve the state-of-the-art, foster competitive technology insertion, and promote re-use?

- Talk Objectives
- Background
 - Anti Tamper (AT)
 - Open Architecture System
 - Open Architecture vs. AT
 - Crucial Open AT Technologies
 - Summary

Anti-Tamper (AT)

The damaged EP-3 on the ground on Hainan Island

eReader? Android Tablet?

- Why do adversaries tamper systems?
 - Countermeasure development
 - Unauthorized technology transfer
 - Unauthorized modification to increase capabilities
- Anti-Tamper:
 - Technologies aimed at deterring and/or delaying unauthorized exploitation of critical information and technologies
 - Schemes range from simple "lock-itup" to "deter-detect-react"

http://en.wikipedia.org/wiki/Hainan Island incident http://www.npr.org/2011/03/27/134897271/cheaper-than-a-tablet-rooting-your-e-reader

For HPEC, a large percentage of CT/CPI is in software/firmware!

Adversary objective: Access/tamper protected code and data

Remote Attack

- Gained remote "login" to the system
 - Malware
 - Lost credentials
 - Trusted relationships
- Timing attack to discover secret keys

Local Attack

- Gained physical access
 - Captured or FMS
- Testbench characterization
- Side-channel attacks
 - Timing
 - Power, radiation
 - Acoustic

Intrusive Attack

- Gained access to inside of the system
 - Signal probing
 - Fault analysis
 - Foreign HW/SW insertion
 - Explore memories and disks

Destructive Attack

- Gained chip level access
 - Depackaging, drilling, shaving, etc.
- Reverse engineering
 - ASICs, FPGAs

Open Architecture Systems

Benefits:

Permit procurement of subsystems from independent sources Enable computing hardware refresh without major software rewrite

Facilitate algorithm insertion ("modes") by 3rd parties.

- Talk Objectives
- Background
 - Anti Tamper (AT)
 - Open Architecture System
- Open Architecture vs. AT
 - Crucial Open AT Technologies
 - Summary

Open Architecture vs. Anti Tamper

Open Architecture Desirable Features	AT Desirable Features	
Open standard interface: Predictable behavior	Deny unauthorized access and obfuscate responses	
Modularity: Self- contained, well-defined functional units	Prevent isolation and attack of individual units	
Refresh: Adoption of 3 rd party hardware and software	Prohibit insertion of unauthorized hardware and software	
Extensibility & scalability: Enable new capabilities	Avoid non-essential points of entry for exploration	
Maintainability: Easy to diagnose and repair	Disallow poking and changes	

AT Implications on Open Systems

- AT requirement can force open systems back to being closed and proprietary
- Solution: Apply open AT technology decoupled from the system
 - Maintain competition and technology refresh
 - Reduce acquisition cost and time

Open AT Technologies

Open System Desirable Features	AT Desirable Features	Open AT Technologies
Open standard interface: Predictable behavior	Deny unauthorized access and obfuscate responses	Personalizable standard AT approaches
Modularity: Self- contained, well-defined functional units	Prevent isolation and attack of individual units	Units only operate in authenticated systems
Refresh: Adoption of 3 rd party hardware and software	Prohibit insertion of unauthorized hardware and software	Authenticated hardware and software
Extensibility & scalability: Enable new capabilities	Avoid non-essential points of entry for exploration	Encryption of signals and data
Maintainability: Easy to diagnose and repair	Disallow poking and changes	Personalizable protective packaging and sensing

Vision of Open AT Technologies Protect Lowest Replaceable Units and CPI

- Talk Objectives
- Background
 - Anti Tamper (AT)
 - Open Architecture System
- Open Architecture vs. AT
- Crucial Open AT Technologies
 - Summary

Crucial Open AT Technology Candidates

Technology		AT Functions		S	Accoment
		Prevent	Detect	React	Assessment
Unit Personalization		\checkmark	\checkmark	\checkmark	 Allows HW/SW units to be authenticated Can leverage standard cryptography schemes Must standardize protocols and interfaces Needs red teaming
Signal/Data Encryption	Encrypted System Dus	\checkmark			 Protects CPI at rest or in motion No unencrypted data ever travel in the clear Can leverage standard encryption algorithms Must standardize interfaces
Side-Channel Resistance		\checkmark			 Protects secret keys from being extracted Many protection schemes are proprietary Need to evaluate their effectiveness Room for innovation
Packaging & Sensing	Secure ASC FPGA	\checkmark	\checkmark	\checkmark	 Provides volume protection Many inexpensive and small-size sensors Needs effective integration approaches Issues with standby power
Protective PUF* Coating		\checkmark	\checkmark	\checkmark	 Provides protection and unique personalization Several commercial products Needs effective integration approaches *PUF: Physical Unclonable Function

Hardware and Software Authentication

- AT PUF (physical unclonable function) is the "key" of authentication
 - PUF provides a unique ID for hardware personalization
 - AT control computer verifies the authenticity of the HW/SW assembly
- Damaged PUF prevents loading software/firmware

AT Open-Architecture Signal Processor

- Critical Technology (CT) / Critical Program Information (CPI)
 - Timing protocol, multi-platform coordination
 - Advanced signal processing algorithm Spectral analysis and discrimination Frequencies, waveforms, etc.

Essential to protect CT/CPI from being tampered and exploited in all different phases of its life cycle

Crucial Open AT Technologies

HPEC 2011-17 MMV 10/25/2011

1951–2011 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

HPEC 2011-18 MMV 10/25/2011

1951-2011 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Crucial Open AT Technologies

HPEC 2011-19 MMV 10/25/2011

1951–2011 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

1951–2011 LINCOLN LABORATORY Massachusetts Institute of Technology

HPEC 2011-20 MMV 10/25/2011

Crucial Open AT Technologies

1951-2011

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

HPEC 2011-21 MMV 10/25/2011

Open AT CapabilitiesPrevents unauthorized software and firmware accessDisallows hardware/software/firmware replacementDefends against reverse engineeringShields signals from probingProtects storage from explorationGuards against secret key extractionMinimum performance impactReady-to-use architecture

* Hardware substitution

HPEC 2011-22 MMV 10/25/2011

Open AT Capabilities Prevents unauthorized software and firmware access Disallows hardware/software/firmware replacement Defends against reverse engineering Shields signals from probing Protects storage from exploration Guards against secret key extraction Minimum performance impact Ready-to-use architecture

* Hardware substitution

Open AT Capabilities Prevents unauthorized software and firmware access Disallows hardware/software/firmware replacement Defends against reverse engineering Shields signals from probing Protects storage from exploration Guards against secret key extraction Minimum performance impact Ready-to-use architecture

* Hardware substitution

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

1951-2011

Crucial Open AT Technologies

HPEC 2011-24 MMV 10/25/2011

Open AT Capabilities Prevents unauthorized software and firmware access Disallows hardware/software/firmware replacement Defends against reverse engineering Shields signals from probing Protects storage from exploration Guards against secret key extraction Minimum performance impact Ready-to-use architecture

* Hardware substitution

1951–2011 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Summary

Anti-Tamper in Open Architecture Systems

- Two key challenges
 - How can Anti-Tamper (AT) requirements be integrated into openarchitecture systems and still maintain benefits of openness?
 - How can open-architectures be applied to AT itself to improve the state-of-the-art, foster competitive technology insertion, and promote re-use?
- A few research directions
 - Assess program-specific needs for AT open systems
 - Research/identify/evaluate crucial AT technologies for open systems
 - Establish AT technology risk reduction roadmap and strategy for AT open systems