
Don McCoy, Brooks Moses,
Stefan Seefeld, Justin Voo

Implementing a Speech
Recognition Algorithm
with VSIPL++

Software Engineers

Embedded Systems Division / HPC Group

September 2011

www.mentor.com
© 2011 Mentor Graphics Corp.

Objective

VSIPL++ Standard:
 Standard originally developed under Air Force and MIT/LL

leadership.

 CodeSourcery (now Mentor Graphics) has a commercial
implementation: Sourcery VSIPL++.

 Intention is to be a general library for signal and image
applications.

 Originating community largely focused on radar/sonar.

Question: Is VSIPL++ indeed useful outside of radar
and radar-like fields, as intended?

 Sample application: Automatic Speech Recognition

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

www.mentor.com
© 2011 Mentor Graphics Corp.

Automatic Speech Recognition

This presentation focuses on two aspects:

 Feature Extraction

 “Decoding” (a.k.a. Recognition)

We will compare to existing Matlab and C code:

 PMTK3 (Matlab modeling toolkit)
— written by Matt Dunham, Kevin Murphy and others

 MFCC code (Matlab implementation)
— written by Dan Ellis

 HTK (C-based research implementation)
— from Cambridge University Engineering Department (CUED)

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

www.mentor.com
© 2011 Mentor Graphics Corp.

“DECODING”

Implementing a Speech Recognition Algorithm with VSIPL++

www.mentor.com
© 2011 Mentor Graphics Corp.

Decoding

 Hidden Markov Models (HMM)

s ih k s

"six"
a22 a33 a44 a55

a12 a23 a34 a34

a24 a35

Observation
sequence

o1 o2 o3 o4 o5 o6 o7

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

www.mentor.com
© 2011 Mentor Graphics Corp.

Decoding

 Gaussian Mixture Models
— Trained on acoustic data to account for variation
— Diagram shows representation of PDF for a two-variable MFCC

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

www.mentor.com
© 2011 Mentor Graphics Corp.

Decoding

 We wish to find the highest probability word yn from a
sequence of feature vectors O = { o1, o2, … on }, so we
maximize (over all words) the a posteriori probability

P (yn | O)

 Using Bayes rule, we find it is sufficient to calculate the
log-likelihood

log p (O | yn) + log P (yn)

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

Likelihood of a word
with a given set of
model parameters

www.mentor.com
© 2011 Mentor Graphics Corp.

Decoding Implementation

 Matlab and VSIPL++ code – PMTK3 hmmFilter() function

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

Matrix<T> AT = transmat.transpose();
alpha = T();
normalize(initDist * softev.col(0), alpha.col(0), scale(0));
for (length_type t = 1; t < tmax; ++t)
 normalize(prod(AT, alpha.col(t-1)) * softev.col(t),
 alpha.col(t), scale(t));
T eps = std::numeric_limits<T>::epsilon();
loglik = sumval(log(scale + eps));

scale = zeros(T,1);
AT = transmat';
alpha = zeros(K,T);
[alpha(:,1), scale(1)] = normalize(initDist(:) .* softev(:,1));
for t=2:T
 [alpha(:,t), scale(t)] = normalize((AT * alpha(:,t-1)) .*
 softev(:,t));
end
loglik = sum(log(scale+eps));

www.mentor.com
© 2011 Mentor Graphics Corp.

Decoding Implementation

 Matlab and VSIPL++ code – PMTK3 hmmFilter() function

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

Matrix<T> AT = transmat.transpose();
alpha = T();
normalize(initDist * softev.col(0), alpha.col(0), scale(0));
for (length_type t = 1; t < tmax; ++t)
 normalize(prod(AT, alpha.col(t-1)) * softev.col(t),
 alpha.col(t), scale(t));
T eps = std::numeric_limits<T>::epsilon();
loglik = sumval(log(scale + eps));

scale = zeros(T,1);
AT = transmat';
alpha = zeros(K,T);
[alpha(:,1), scale(1)] = normalize(initDist(:) .* softev(:,1));
for t=2:T
 [alpha(:,t), scale(t)] = normalize((AT * alpha(:,t-1)) .*
 softev(:,t));
end
loglik = sum(log(scale+eps));

www.mentor.com
© 2011 Mentor Graphics Corp.

Decoding Implementation

 Similar line counts for both Matlab and VSIPL++
— VSIPL++: 30
— Matlab: 21

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

0

5

10

15

20

25

30

SV++ Matlab

* generated using David A. Wheeler's 'SLOCCount'.

www.mentor.com
© 2011 Mentor Graphics Corp.

Decoding Implementation

 Sourcery VSIPL++ Performance

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

0

0.2

0.4

0.6

0.8

1

1.2

3 4 5 6 7 8 9 10 11 12 13 14

Intel

CUDA

Cell

5-State HMM

M
ill

io
ns

 o
f

Lo
g-

Li
ke

lih
oo

ds
 (

M
od

el
s)

Number of Frames (2^N)

www.mentor.com
© 2011 Mentor Graphics Corp.

Decoding Implementation

Additional Parallelization Strategies

 Custom kernels (GPU, Cell)
— Include user-written low-level kernels for key operations
— Pack more operations into each invocation
— Take advantage of overlapped computations and data transfers

 Maps
— Distribute VSIPL++ computations across multiple processes
— Explicit management of multicore/multiprocessor assignment

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

www.mentor.com
© 2011 Mentor Graphics Corp.

FEATURE EXTRACTION

Implementing a Speech Recognition Algorithm with VSIPL++

www.mentor.com
© 2011 Mentor Graphics Corp.

Feature Extraction

 Speech signals – the word “four” and its spectrogram

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

FFT
FFT

FFT
. . .

www.mentor.com
© 2011 Mentor Graphics Corp.

Feature Extraction

 Mel-frequency Cepstral Coefficients
— 13 coefficients, one of which is overall power across all bands
— 13 delta coefficients
— 13 delta-delta, or ‘acceleration’ coefficients

 Result: 39-element “feature” vector for each timeslice
— A 16 kHz signal chopped into 1024 samples with 50% overlap

yields a feature vector every 32 ms.
— Each second of speech gives about 31 feature vectors.

 Steps:
— Pre-emphasis
— FFT
— Filter bank (spectral warping)
— DCT

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

www.mentor.com
© 2011 Mentor Graphics Corp.

Feature Extraction

 Pre-emphasis
— High-pass FIR filter: H(z) = 1 – 09.5z-1
— Increases recognition accuracy by leveling the energy present in

across frequency bands

 Framing / Windowing / FFT
— Choose offset between frames (30-50%)
— Choose frame length (300 – 1024 samples)

 Mel-scale spectral warping
— Provides compensation for how
 the auditory system perceives
 relative differences in pitch

 Discrete Cosine Transform
— Final product are the cepstral
 coefficients

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

www.mentor.com
© 2011 Mentor Graphics Corp.

Feature Extraction Implementation

 VSIPL++ code

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

// Apply a pre-emphasis filter to the input
Vector<scalar_f> h(2);
h(0) = scalar_f(1); h(1) = scalar_f(-0.97);
Fir<scalar_f> preemp(h, signal_length);
preemp(x, y);

// Compute the spectrogram of the filtered input
Matrix<std::complex<T> > S = specgram(y,
 hanning(frame_length), frame_offset);

// Integrate into mel bins, in the real domain
Matrix<T> A = prod(wts, magsq(S));

// Convert to cepstra via DCT
Matrix<T> cepstra = spec2cep(A, numceps);

www.mentor.com
© 2011 Mentor Graphics Corp.

Feature Extraction Implementation

 VSIPL++ code

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

// Apply a pre-emphasis filter to the input
Vector<scalar_f> h(2);
h(0) = scalar_f(1); h(1) = scalar_f(-0.97);
Fir<scalar_f> preemp(h, signal_length);
preemp(x, y);

// Compute the spectrogram of the filtered input
Matrix<std::complex<T> > S = specgram(y,
 hanning(frame_length), frame_offset);

// Integrate into mel bins, in the real domain
Matrix<T> A = prod(wts, magsq(S));

// Convert to cepstra via DCT
Matrix<T> cepstra = spec2cep(A, numceps);

www.mentor.com
© 2011 Mentor Graphics Corp.

Feature Extraction Implementation

 A closer look at the spectrogram function

or

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

Fft<const_Vector, T, std::complex<T>, 0, by_reference, 1>
 fft(Domain<1>(N), 1.0);

for (length_type m = 0; m < M; ++m)
 fft(in(Domain<1>(m * I, 1, N)) * window, S.col(m));

Fftm<T, complex<T>, col, fft_fwd, by_reference, 1>
 fftm(Domain<2>(N, M), 1.0);
Matrix<T, Dense<2, T, col2_type> > tmp(N, M);

for (length_type m = 0; m < M; ++m)
 tmp.col(m) = in(Domain<1>(m * I, 1, N)) * window;
fftm(tmp, S);

www.mentor.com
© 2011 Mentor Graphics Corp.

Feature Extraction Implementation

 A closer look at the spec2cep function (aka the DCT)

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

template <typename T,
 typename Block>
vsip::Matrix<T>
spec2cep(
 vsip::const_Matrix<T, Block> spec,
 vsip::length_type const ncep)
{
 using namespace vsip;

 Length_type nrow = spec.size(0);
 Matrix<T> dctm(ncep, nrow, T());

 for (length_type i = 0; i < ncep; ++i)
 dctm.row(i) = cos(i * ramp<T>(1, 2, nrow) /
 (2 * nrow) * M_PI) * sqrt(T(2) / nrow);
 return (prod(dctm, log(spec)));
}

www.mentor.com
© 2011 Mentor Graphics Corp.

Feature Extraction Implementation

 A closer look at the spec2cep function (aka the DCT)

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

template <typename T>
class Dct
{
public:
 Dct(vsip::length_type const ncep, vsip::length_type const nfilts)
 : ncep_(ncep), nfilts_(nfilts), dctm_(ncep, nfilts)
 {
 for (vsip::length_type i = 0; i < ncep; ++i)
 dctm_.row(i) = cos(i * vsip::ramp<T>(1, 2, nfilts) /
 (2 * nfilts) * M_PI) * sqrt(T(2) / nfilts);
 }
 template <typename Block>
 vsip::Matrix<T>
 operator()(vsip::const_Matrix<T, Block> input)
 {
 return (vsip::prod(dctm_, input));
 }
 ...
};

www.mentor.com
© 2011 Mentor Graphics Corp.

Feature Extraction Implementation

 VSIPL++ using the modified DCT implementation

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

Dct<T> dct(numceps, numfilters);

 ...

// Convert to cepstra via DCT
Matrix<T> cepstra = dct(log(A));

www.mentor.com
© 2011 Mentor Graphics Corp.

Feature Extraction Implementation

 Line count comparison*
— C++: 63
— Matlab: 63
— VSIPL++: 50

 Performance

 vs. optimized C

 (time to process

 1000 MFCCs)
— C : 1.1 S
— Sourcery

VSIPL++: 0.8 s

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

0

10

20

30

40

50

60

70

SV++ C Matlab

* generated using David A. Wheeler's 'SLOCCount'.

www.mentor.com
© 2011 Mentor Graphics Corp.

Feature Extraction Implementation

 Sourcery VSIPL++ performance (FFT version)

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

0

10

20

30

40

50

60

70

9 11 13 15 17 19 21

Intel

CUDA

Cell

M
ill

io
ns

 o
f
Sa

m
pl

es
/s

ec
on

d
pr

oc
es

se
d

Signal length (2^N)

www.mentor.com
© 2011 Mentor Graphics Corp.

Feature Extraction Implementation

 Sourcery VSIPL++ performance (multiple-FFT version)

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

0

10

20

30

40

50

60

70

9 11 13 15 17 19 21

Intel

CUDA

Cell

M
ill

io
ns

 o
f
Sa

m
pl

es
/s

ec
on

d
pr

oc
es

se
d

Signal length (2^N)

www.mentor.com
© 2011 Mentor Graphics Corp.

CONCLUSIONS

Implementing a Speech Recognition Algorithm with VSIPL++

www.mentor.com
© 2011 Mentor Graphics Corp.

VSIPL++ Assessment & Conclusions

Benefits of the VSIPL++ Standard
 Does not tie the user’s hands with regard to algorithmic

choices
— Prototyping algorithms is fast and efficient for users

 C++ code is easier to read and more compact
— Fosters rapid development

 Implementers of the standard have the flexibility required
to get good performance.
— Allows best performance on a range of hardware

 Prototype code is benchmark-ready…

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

www.mentor.com
© 2011 Mentor Graphics Corp.

VSIPL++ Assessment & Conclusions, cont…

Potential Extensions to the VSIPL++ Standard
 Direct Data Access (DDA)

— Already proposed to standards body
— Proven useful in the field

 Sliding-window FFT / FFTM

 DCT and other transforms

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

www.mentor.com
© 2011 Mentor Graphics Corp.

www.mentor.com
© 2011 Mentor Graphics Corp.

References

 PMTK3
— probabilistic modeling toolkit for Matlab/Octave, version 3
— by Matt Dunham, Kevin Murphy, et.al.
— http://code.google.com/p/pmtk3/

 PLP and RASTA (and MFCC, and inversion) in Matlab
— by Daniel P. W. Ellis, 2005
— http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

 HTK
— Hidden Markov Model Toolkit (HTK)
— by the Machine Intelligence Laboratory at Cambridge University
— http://htk.eng.cam.ac.uk/

 Sourcery VSIPL++
— Optimized implementation of the VSIPL++ standard
— http://www.mentor.com/embedded-software/codesourcery

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011

http://code.google.com/p/pmtk3/
http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/
http://htk.eng.cam.ac.uk/
http://www.mentor.com/embedded-software/codesourcery

	�Implementing a Speech Recognition Algorithm with VSIPL++
	Objective
	Automatic Speech Recognition
	“Decoding”
	Decoding
	Decoding
	Decoding
	Decoding Implementation
	Decoding Implementation
	Decoding Implementation
	Decoding Implementation
	Decoding Implementation
	Feature Extraction
	Feature Extraction
	Feature Extraction
	Feature Extraction
	Feature Extraction Implementation
	Feature Extraction Implementation
	Feature Extraction Implementation
	Feature Extraction Implementation
	Feature Extraction Implementation
	Feature Extraction Implementation
	Feature Extraction Implementation
	Feature Extraction Implementation
	Feature Extraction Implementation
	conclusions
	VSIPL++ Assessment & Conclusions
	VSIPL++ Assessment & Conclusions, cont…
	Slide Number 29
	References

