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Objective 

VSIPL++ Standard: 
 Standard originally developed under Air Force and MIT/LL 

leadership. 

 CodeSourcery (now Mentor Graphics) has a commercial 
implementation: Sourcery VSIPL++. 

 Intention is to be a general library for signal and image 
applications. 

 Originating community largely focused on radar/sonar. 

Question: Is VSIPL++ indeed useful outside of radar 
and radar-like fields, as intended? 

 Sample application: Automatic Speech Recognition 
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Automatic Speech Recognition 

This presentation focuses on two aspects: 

 Feature Extraction 

 “Decoding” (a.k.a. Recognition) 

 

We will compare to existing Matlab and C code: 

 PMTK3 (Matlab modeling toolkit) 
— written by Matt Dunham, Kevin Murphy and others 

 MFCC code (Matlab implementation) 
— written by Dan Ellis 

 HTK (C-based research implementation) 
— from Cambridge University Engineering Department (CUED) 
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“DECODING” 
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Decoding 

 Hidden Markov Models (HMM) 
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Decoding 

 Gaussian Mixture Models 
— Trained on acoustic data to account for variation 
— Diagram shows representation of PDF for a two-variable MFCC 
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Decoding 

 We wish to find the highest probability word yn from a 
sequence of feature vectors O = { o1, o2, … on }, so we 
maximize (over all words) the a posteriori probability  

P ( yn | O ) 
 

 Using Bayes rule, we find it is sufficient to calculate the 
log-likelihood 

log p (O | yn) + log P (yn ) 
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Decoding Implementation 

 Matlab and VSIPL++ code – PMTK3 hmmFilter() function 
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Matrix<T> AT = transmat.transpose(); 
alpha = T(); 
normalize(initDist * softev.col(0), alpha.col(0), scale(0)); 
for (length_type t = 1; t < tmax; ++t) 
  normalize(prod(AT, alpha.col(t-1)) * softev.col(t),  
            alpha.col(t), scale(t)); 
T eps = std::numeric_limits<T>::epsilon(); 
loglik = sumval(log(scale + eps)); 

scale = zeros(T,1); 
AT = transmat'; 
alpha = zeros(K,T); 
[alpha(:,1), scale(1)] = normalize(initDist(:) .* softev(:,1)); 
for t=2:T 
  [alpha(:,t), scale(t)] = normalize((AT * alpha(:,t-1)) .*  
                                    softev(:,t)); 
end 
loglik = sum(log(scale+eps)); 
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Decoding Implementation 
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Decoding Implementation 

 Similar line counts for both Matlab and VSIPL++ 
— VSIPL++: 30 
— Matlab: 21 
 
 
 

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011 

0 

5 

10 

15 

20 

25 

30 

SV++ Matlab 

* generated using David A. Wheeler's 'SLOCCount'. 



www.mentor.com 
© 2011 Mentor Graphics Corp. 

Decoding Implementation 

 Sourcery VSIPL++ Performance 
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Decoding Implementation 

Additional Parallelization Strategies 
 

 Custom kernels (GPU, Cell) 
— Include user-written low-level kernels for key operations 
— Pack more operations into each invocation 
— Take advantage of overlapped computations and data transfers 
 

 Maps 
— Distribute VSIPL++ computations across multiple processes 
— Explicit management of multicore/multiprocessor assignment 

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011 



www.mentor.com 
© 2011 Mentor Graphics Corp. 

FEATURE EXTRACTION 
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Feature Extraction 

 Speech signals – the word “four” and its spectrogram 
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Feature Extraction 

 Mel-frequency Cepstral Coefficients 
— 13 coefficients, one of which is overall power across all bands 
— 13 delta coefficients 
— 13 delta-delta, or ‘acceleration’ coefficients 

 Result: 39-element “feature” vector for each timeslice 
— A 16 kHz signal chopped into 1024 samples with 50% overlap 

yields a feature vector every 32 ms. 
— Each second of speech gives about 31 feature vectors. 

 Steps: 
— Pre-emphasis 
— FFT 
— Filter bank (spectral warping) 
— DCT 
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Feature Extraction 

 Pre-emphasis 
— High-pass FIR filter: H(z) = 1 – 09.5z-1 
— Increases recognition accuracy by leveling the energy present in 

across frequency bands 

 Framing / Windowing / FFT 
— Choose offset between frames (30-50%) 
— Choose frame length (300 – 1024 samples) 

 Mel-scale spectral warping 
— Provides compensation for how  
 the auditory system perceives 
 relative differences in pitch 

 Discrete Cosine Transform 
— Final product are the cepstral 
 coefficients 
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Feature Extraction Implementation 

 VSIPL++ code 
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// Apply a pre-emphasis filter to the input 
Vector<scalar_f> h(2); 
h(0) = scalar_f(1);  h(1) = scalar_f(-0.97); 
Fir<scalar_f> preemp(h, signal_length); 
preemp(x, y); 
 
// Compute the spectrogram of the filtered input 
Matrix<std::complex<T> > S = specgram(y, 
  hanning(frame_length), frame_offset); 
 
// Integrate into mel bins, in the real domain 
Matrix<T> A = prod(wts, magsq(S)); 
 
// Convert to cepstra via DCT 
Matrix<T> cepstra = spec2cep(A, numceps); 
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Feature Extraction Implementation 

 A closer look at the spectrogram function 

 

 

 
 

or 
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Fft<const_Vector, T, std::complex<T>, 0, by_reference, 1> 
  fft(Domain<1>(N), 1.0); 
 
for (length_type m = 0; m < M; ++m) 
  fft(in(Domain<1>(m * I, 1, N)) * window, S.col(m)); 
  
 
 
Fftm<T, complex<T>, col, fft_fwd, by_reference, 1> 
  fftm(Domain<2>(N, M), 1.0); 
Matrix<T, Dense<2, T, col2_type> > tmp(N, M); 
 
for (length_type m = 0; m < M; ++m) 
  tmp.col(m) = in(Domain<1>(m * I, 1, N)) * window; 
fftm(tmp, S); 
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Feature Extraction Implementation 

 A closer look at the spec2cep function (aka the DCT) 

 

D.M., Implementing a Speech Recognition Algorithm with VSIPL++, September 2011 

template <typename T, 
          typename Block> 
vsip::Matrix<T> 
spec2cep( 
  vsip::const_Matrix<T, Block> spec, 
  vsip::length_type const ncep) 
{ 
  using namespace vsip; 
 
  Length_type nrow = spec.size(0); 
  Matrix<T> dctm(ncep, nrow, T()); 
 
  for (length_type i = 0; i < ncep; ++i) 
    dctm.row(i) = cos(i * ramp<T>(1, 2, nrow) / 
                      (2 * nrow) * M_PI) * sqrt(T(2) / nrow); 
  return (prod(dctm, log(spec))); 
} 
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Feature Extraction Implementation 

 A closer look at the spec2cep function (aka the DCT) 
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template <typename T> 
class Dct 
{ 
public: 
  Dct(vsip::length_type const ncep, vsip::length_type const nfilts) 
    : ncep_(ncep), nfilts_(nfilts), dctm_(ncep, nfilts) 
  { 
    for (vsip::length_type i = 0; i < ncep; ++i) 
      dctm_.row(i) = cos(i * vsip::ramp<T>(1, 2, nfilts) /  
                         (2 * nfilts) * M_PI) * sqrt(T(2) / nfilts); 
  } 
  template <typename Block> 
  vsip::Matrix<T> 
  operator()(vsip::const_Matrix<T, Block> input) 
  { 
    return (vsip::prod(dctm_, input)); 
  } 
  ... 
}; 
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Feature Extraction Implementation 

 VSIPL++ using the modified DCT implementation 
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Dct<T> dct(numceps, numfilters); 
 
 ... 
 
// Convert to cepstra via DCT 
Matrix<T> cepstra = dct(log(A)); 
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Feature Extraction Implementation 

 Line count comparison* 
— C++: 63 
— Matlab: 63 
— VSIPL++: 50 

 

 Performance 

 vs. optimized C 

 (time to process 

 1000 MFCCs) 
— C : 1.1 S  
— Sourcery 

VSIPL++: 0.8 s 
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Feature Extraction Implementation 

 Sourcery VSIPL++ performance (FFT version) 
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Feature Extraction Implementation 

 Sourcery VSIPL++ performance (multiple-FFT version) 
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CONCLUSIONS 

Implementing a Speech Recognition Algorithm with VSIPL++ 
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VSIPL++ Assessment & Conclusions 

Benefits of the VSIPL++ Standard 
 Does not tie the user’s hands with regard to algorithmic 

choices 
— Prototyping algorithms is fast and efficient for users 

 C++ code is easier to read and more compact 
— Fosters rapid development 

 Implementers of the standard have the flexibility required 
to get good performance. 
— Allows best performance on a range of hardware 

 Prototype code is benchmark-ready… 
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VSIPL++ Assessment & Conclusions, cont… 

Potential Extensions to the VSIPL++ Standard 
 Direct Data Access (DDA) 

— Already proposed to standards body 
— Proven useful in the field 

 Sliding-window FFT / FFTM 

 DCT and other transforms 
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