
Implementing a Speech Recognition Algorithm with VSIPL++
Don McCoy, Justin Voo, Stefan Seefeld, Brooks Moses

Embedded Software Division

Mentor Graphics

{don, justin, stefan, brooks}@codesourcery.com

Introduction

The VSIPL++ standard is designed to provide high

programmer productivity and program portability, while

maintaining high performance. We have successfully shown

that it can be applied to a Synthetic Aperture Radar benchmark

program and obtain high performance on a wide range of target

platforms.

In this paper, we consider a different application of speech

recognition, showing that the VSIPL++ API is useful beyond

radar applications. We also focus on programmer productivity

and source-code complexity in this paper, as there are mature

open-source speech-recognition toolkits that provide a realistic

basis for comparison.

The VSIPL++ API

The VSIPL++ standard [1] defines a C++ library API for

developing high-performance signal and image-processing

programs in a portable high-level manner. It provides an

interface for multi-dimensional array data, as well as common

operations (FFTs, convolutions, linear-algebraic operations

and solvers, elementwise operations, and so forth) on that array

data.

The high level of the functions and operations in VSIPL++ has

advantages in programmer productivity, but it also is important

for achieving high performance in a portable manner. When

an algorithm can be expressed as a small number of compute-

intensive function calls, the library implementation has

freedom to implement these functions in ways that effectively

use the parallel capabilities of a wide range of hardware. In

previous papers [3, 4] we have demonstrated the effectiveness

of this in practice, showing how Sourcery VSIPL++ can

achieve high performance from the same program on both

Cell/B.E. and NVIDIA CUDA hardware.

Thus, an important criterion for the applicability of VSIPL++

to a computational algorithm is how well the algorithm can be

expressed in terms of large compute-intensive operations that

are supported in the VSIPL++ API.

Existing Speech Recognition Implementations

To measure the effectiveness of VSIPL++ in representing

speech-recognition algorithms, we need a basis for

comparison. In this study, we consider two: the Hidden

Markov Model Toolkit (HTK) [5], and the Probabilistic

Modeling Toolkit for Matlab/Octave (pmtk3) [6].

HTK is a research implementation, written in C for high

performance. As such, it represents a real-world example of

production code, and illustrates both the complexity of the

algorithms to be implemented and the complexity of program

required to obtain high performance in a low-level language.

By contrast, ptmk3 contains reference implementations of the

algorithms in Matlab, optimized for readability – and thus

represent an ideal high-level expression with regards to

simplicity rather than performance.

The ideal, then, would be to obtain performance comparable to

the hand-optimized low-level code of HTK with the readability

of the high-level ptmk3 code, and these two packages provide

a good basis for comparing how close we can come to that

ideal with VSIPL++.

Basics of Automated Speech Recognition

In a Hidden-Markov-Model–based automated speech

recognition system, parts of speech – either whole words or

phonemes, depending on the target application – are modeled

as Markov processes that progress through a sequence of

hidden states and produce output sound characteristics in a

probabilistic manner. Thus, the recognition process involves

computing for each part of speech the probability that the

measured sound characteristics were generated by the

corresponding Markov model.

The first step is to reduce the incoming audio stream into a

discrete sequence of characteristics, ideally in a way such that

the characteristics are small yet retain the data critical to

distinguishing different phonemes. Typically, this is done by

separating the audio stream into short windowed samples (e.g.,

5ms long) and computing the mel-frequency cepstral

coefficients (MFCCs) of the samples. The MFCCs are

computed by taking a cosine transform of the power spectrum

over a non-linear mel-scale of frequencies – thus, in effect, a

spectrum of a spectrum.

More precisely, the power spectrum is first computed with a

Fourier transform of the input signal, and this is binned into

mel-scale frequency bins using what amounts to a sequence of

bandpass filters:

where x is the (windowed) input signal, are the filter

coefficients for the ith frequency bin in the mel scale, and is

the power spectrum over the frequency bins. The MFCC

coefficients c are then computed with a discrete cosine

transform of the power spectrum:

In a typical case, the overall characteristic vector for each

sample might be a small number of frequency bins along with

the first- and second-order differences of these bins in time.

The second step is to compute the best match between the

computed sequence of characteristics and the Markov models

for the parts of speech, using a Viterbi algorithm. The models

each consist of a small number of states (six is a typical

number), transition probabilities between these states, and

probabilities that a given output characteristic vector will be

produced by a given state. Thus, for a sequence of states

 and a sequence of observations
 , the joint probability that the sequence of

observations is generated by state sequence X for model is

given by

where are the initial probabilities of state i, are the

probabilities of state i producing observation o, and are the

probabilities of transitioning from state i to state j.

The Viterbi algorithm computes the probability

associated with the most likely sequence of hidden states. For

each observed sample t in the sequence, the probability

of the most likely sequence that ends in state j can be

computed as

This is then iterated over the observed samples up to time T,

and the final probability for the most likely sequence is then

The models are then ranked according to the values,

potentially with additional weighting from linguistic analysis,

and the highest-ranked model determines the recognized part

of speech.

Implementing Speech Recognition in VSIPL++

The MFCC algorithm fits very well into VSIPL++; the

primitive operations are FFTs, dot products, and elementwise

logarithms – all of which are expressed as VSIPL++

primitives. Moreover, there is an inherent data parallelism in

the MFCC computations, which can also be expressed in

VSIPL++. If the incoming signal is stored in a two-

dimensional matrix, with each windowed sample stored in a

row of the matrix, the VSIPL++ Fftm and vmmul operators

can be used to apply the FFTs and dot products to all rows of

the matrix in a single operation.

The Viterbi algorithm, which is the most computationally-

intensive portion of the speech recognition process, fits less-

well into VSIPL++. There are three levels of data parallelism

– the inherent fine-grained parallelism in computing the

products and maximum value, the parallelism in computing the

best-path probability for each state, and the coarse-grained

parallelism in computing the best-path probability for each

model. Only the finest level of parallelism, in computing the

 values, can be expressed in terms of VSIPL++

operations. Unlike with the MFCC computation, there are no

operators for computing the necessary maximum values on

multiple rows of a matrix simultaneously, and so the higher

levels of parallelism must be expressed in necessarily-serial

loops.

Thus, we anticipate that a VSIPL++ implementation of the

Viterbi algorithm will provide reasonably good performance

on platforms which exploit fine-grained parallelism, such as a

single-core CPU, but it will not be able to effectively use

platforms such as GPUs or multi-core CPUs which exploit

coarse-grained parallelism.

Enhancements to VSIPL++

In the MFCC computation, we saw that the existence of

VSIPL++ operators that apply the same operation to each row

(or column) of a matrix are very powerful in expressing the

parallelism of the computation in a way that the library can

take advantage of to enable high performance. We have been

experimenting with extensions to the VSIPL++ API that

generalize this concept to other operators and combinations of

operators, so that algorithms such as the Viterbi calculation

may be expressed in a similar manner. In our presentation, we

will describe these extensions and the results of applying them

in this case.

Anticipated Results and Conclusions

We will compare line-count, code complexity, and

performance of the C, Matlab, and VSIPL++ implementations

of the speech processing algorithms, illustrating the strengths

and weaknesses of the VSIPL++ API in these cases, and

contrasting it to the ideal of Matlab simplicity with optimized-

C performance. We will also discuss a programming model in

which the bulk of the program is written in VSIPL++, and then

a few small key inner loops are rewritten in low-level code to

obtain maximum performance.

We expect that, in doing so, we will show that VSIPL++ is

effective as an API in these real-world applications, and that it

can significantly improve readability and programmer

productivity.

References

[1] CodeSourcery, Inc. VSIPL++ Specification 1.02. Georgia

Tech Res. Corp. 2005 [online] http://www.hpec-si.org.

[2] CodeSourcery, Inc. Sourcery VSIPL++. [online]

http://go.mentor.com/vsiplxx.

 [3] J. Bergmann, M. LeBlanc, D. McCoy, B. Moses and S.

Seefeld. Scalable SAR with Sourcery VSIPL++ for the

Cell/B.E. HPEC Workshop Proceedings. 2008. [online]

http://www.ll.mit.edu/HPEC/agendas/proc08/

agenda.html.

[4] D. McCoy, B. Moses, S. Seefeld, M. LeBlanc and J.

Bergmann. Sourcery VSIPL++ for NVIDIA CUDA

GPUs. HPEC Workshop Proceedings. 2009. [online]

http://www.ll.mit.edu/HPEC/agendas/proc09/

agenda.html.

[5] Hidden Model Markov Toolkit (HTK). [online]

http://htk.eng.cam.ac.uk/.

[6] Probabilistic Modeling Toolkit for Matlab/Octave

(pmtk3). [online] http://code.google.com/p/pmtk3/.

[7] Jurafsky, D. and Martin, J. Speech and Language

Processing, 2
nd

 Edition. Prentice Hall, 2008.

The authors would also like to thank Dr. Phillip De Leon of

New Mexico State University for advice on speech-processing

algorithms.

