
The SEEC Framework and
Runtime System

Henry Hoffmann
MIT CSAIL

http://heartbeats.csail.mit.edu/

High Performance Embedded Computing Workshop
September 21-22, 2011

 This work was funded by the U.S. Government under the DARPA UHPC program. The views and conclusions contained
herein are those of the authors and should not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Government.

http://people.csail.mit.edu/hank
http://heartbeats.csail.mit.edu/

In the beginning…*

2
*The beginning, in this case, refers to the beginning of my career (1999)

Performance

Application programmers had one goal:

But Modern Systems Have Increased the
Burden on Application Programmers

3

Performance

P
ow

er

Many additional
constraints

Even worse, constraints can change dynamically

E.g. power cap, workload fluctuation, core failure

beat/s

Lo Hi

Power

Most Programming Models Designed for
Performance

4

Coherent Shared Memory Message Passing

Communication

Concurrency

Coordination

Multi-threaded Multi-process

Through Memory Through Network

Locks Messages

Control Procedural Procedural

Global Shared Cache

Local
Cache

RF

data

store

Local
Cache

RF

data

load

Core 0 Core 1

data

Local
Memory

RF

data

store

Local
Memory

RF
Network
Interface

data

load

Core 0 Core 1

Network
Interface

Network

Procedural control insufficient to meet the needs of modern systems

5

SEEC Replaces Procedural Control with
Self-Aware Control

Procedural Control Self-Aware Control

Decide

Act

• Run in open loop

• Assumptions made at design time

• Based on guesses about future

Decide Act

Observe

• Run in closed loop

• Understand user goals

• Monitor the environment

- Application optimized for system
- No flexibility to adapt to changes

+System optimizes for application
+Flexibly adapt behavior

The self-aware model allows the system

to solve constrained optimization problems dynamically

6

Outline

• Introduction/Motivation

• The SEEC Model and Implementation

• Experimental Validation

• Conclusions

6

7

The SElf-awarE Computing (SEEC) Model

• Goal:
 Reduce programmer burden by continuously optimizing online

• Key Features:
1. Decoupled Approach:

• Applications explicitly state goals and progress
• System software and hardware state available actions
• The SEEC runtime system dynamically selects actions to maintain goals

2. General and Extensible:
• New applications can be supported without training
• New actions can be added without redesign and reimplementation

Application
Developer

Systems
Developer

Observe

Act

Decide

API SPI

SEEC
Runtime

8

Example Self-Aware System
Built from SEEC

Video Encoder

Actuators

Goals:
30 beat/s,
 Minimize Power

30 b/s

Algorithm Cores

Frequency Bandwidth

Control and Learning System

_
r

He
ar

t R
at

e

Time

pure delay
slow convergence
oscillating

SEEC
Controller

Application
-

Desired
Heart
Rate

_
r

Observed Heart Rate

r(k)

Error

e(k)

Speedup

s(k)

SEEC
Controller

Application
-

Desired
Heart
Rate

_
r

Observed Heart Rate

r(k)

Error

e(k)

Speedup

s(k)

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

Action

Sp
ee

du
p

Initial Model

Observe

Decide Act

9

Roles in SEEC’s Decoupled Model

Application
Developer

Systems
Developer

SEEC
Runtime System

Express application
goals and progress

(e.g. frames/ second)

Read goals and
performance

Determine how to adapt
(e.g. How much to
speed up the
application)

Provide a set of actions
and a callback function

(e.g. allocation of cores
to process)

Initiate actions based
on results of decision
phase

Observe

Decide

Act

10

Registering Application Goals

• Performance
– Goals: target heart rate and/or latency between tagged heartbeats
– Progress: issue heartbeats at important intervals

• Quality
– Goals: distortion (distance from application defined nominal value)
– Progress: distortion over last heartbeat

• Power
– Goals: target heart rate / Watt and/or target energy between tagged heartbeats
– Progress: Power/energy over last heartbeat interval

Application

Lo Hi

Power

SEEC
Decision Engine

Performance

Power

Quality

Research to date focuses on meeting performance while minimizing power/maximizing quality

Observe

Actuators

11

Registering System Actions

Each action has the following attributes:
• Estimated Speedup

– Predicted benefit of taking an action
• Cost

– Predicted downside of taking an action
– Axis for cost (accuracy, power, etc.)

• RPC handle
– A function that takes an id an implements the associated action
– This is currently subject to change/redesign

SEEC
Decision Engine

Estimated Speedup

Cost

Callback

Algorithm Cores

Frequency Bandwidth

Act

The SEEC Decision Engine
(A general, extensible approach)

• Pros: Simple, Analyzable, Works well for profiled
applications

• Cons: Lack of generality for unseen applications

12

Controller
(Decide)

Actuator
(Act)

Application
(Observe)

-

Performance
Goal

Current
Performance

Classic Control System: Generalized second order system

Decide

The SEEC Decision Engine
(A general, extensible approach)

13

Controller
(Decide)

Actuator
(Act)

Application
(Observe)

-

Performance
Goal

Current
Performance

Classic Control System

Application
Model

(Decide)

Adaptive Control:
Based on 1-Dimensional
Kalman Filter for Workload
Estimation

• Pros: Adapts to unseen applications

• Cons: Assumes (relative) system models are correct

 Cannot support race-to-idle

Decide

The SEEC Decision Engine
(A general, extensible approach)

14

Controller
(Decide)

Actuator
(Act)

Application
(Observe)

-

Performance
Goal

Current
Performance

Classic Control System

Application
Model

(Decide)

Adaptive Control

Resource
Model

(Decide)

Adaptive Action Selection:
Approximates solution to
linear programming
problem for meeting goals
and minimizing cost

• Pros: Supports race-to-idle and proportional allocation

• Cons: May overprovision due to system model errors

Decide

The SEEC Decision Engine
(A general, extensible approach)

15

Controller
(Decide)

Actuator
(Act)

Application
(Observe)

-

Performance
Goal

Current
Performance

Classic Control System

Application
Model

(Decide)

Adaptive Control

Machine Learner:
Uses reinforcement learning to
estimate system models online,
becomes control system when
models converge

System
Model

(Decide)

Resource
Model

(Decide)

Adaptive Action Selection

Decide

16

Outline

• Introduction/Motivation

• The SEEC Model and Implementation

• Experimental Validation

• Conclusions

16

17

Systems Built with SEEC

17

System Actions Tradeoff Benchmarks
Dynamic Loop
Perforation

Skip some loop iterations Performance vs.
Quality

7/13 PARSECs

Dynamic Knobs Make static parameters
dynamic

Performance vs.
Quality

bodytrack, swaptions,
x264, SWISH++

Core Scheduler Assign N cores to
application

Compute vs. Power PARSEC

Clock Scaler Change processor speed Compute vs. Power PARSEC

Bandwidth Allocator Assign memory controllers
to application

Memory vs. Power STREAM,
PARSEC

Power Manager Combination of the three
above

Performance vs.
Power

PARSEC, STREAM,
simple test apps
(mergesort, binary search)

Learned Models Power Manager with
speedup and cost learned
online

Performance vs.
Power

PARSEC

Multi-App Control Power Manager with
multiple applications

Performance vs.
Power and Quality for
multiple applications

Combinations of
PARSECs

18

Systems Built with SEEC

System Actions Tradeoff Benchmarks
Dynamic Loop
Perforation

Skip some loop iterations Performance vs.
Quality

7/13 PARSECs

Dynamic Knobs Make static parameters
dynamic

Performance vs.
Quality

bodytrack, swaptions,
x264, SWISH++

Core Scheduler Assign N cores to
application

Compute vs. Power PARSEC

Clock Scaler Change processor speed Compute vs. Power PARSEC

Bandwidth Allocator Assign memory controllers
to application

Memory vs. Power STREAM

Power Manager Combination of the three
above

Performance vs.
Power

PARSEC, STREAM,
extra test apps
(mergesort, binary search)

Learned Models Power Manager with
speedup and cost
learned online

Performance vs.
Power

PARSEC

Multi-App Control Power Manager with
multiple applications

Performance vs.
Power and Quality
for multiple
applications

Combinations of
PARSECs

18

19

Constrained Optimization:
Managing Performance/Watt for PARSEC

19

Application Goals

System Actions

Experiment

Optimize performance/Watt on multiple machines

Maintain performance, minimize power

Allocate cores

Allocate clock speed

Allocate memory bandwidth

Execute on two machines (w/ different power profiles)

Compare SEEC to several other approaches including
a static oracle

Performance/Watt for PARSEC
(On server with low idle power)

SEEC beats the static oracle by adjusting to phases within an
application and recognizing when to race-to-idle

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 P
er

 W
at

t

Benchmark

static oracle Heuristic Classic Control SEEC (AAS) SEEC (ML)

Performance/Watt for PARSEC
(On server with high idle power)

SEEC is able to beat the static oracle on a different machine without
code changes

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 P
er

 W
at

t

Benchmark

static oracle Heuristic Classic Control SEEC (AAS) SEEC (ML)

22

Learning Models Online

22

Application Goals

System Actions

Experiment

Adapt system behavior when initial models are wrong

Minimize power consumption while meeting target
performance

Change cores, clock speed, and mem. bandwidth

Initial models are incredibly optimistic
(Assume linear speedup with any resource increase)

Benchmark: STREAM

Observe convergence time and performance/Watt for
converged system

SEEC Can Learn Models Online

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 P
er

W

at
t

Time

Classic Control SEEC

SEEC learns not to allocate too many compute resources to a
memory bound application

When System Models Are Wrong
(Breakdown)

24

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400

N
or

m
al

iz
ed

 P
ow

er

Time

Classic Control SEEC (AAS) SEEC (ML)

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Time

Classic Control SEEC (AAS) SEEC (ML)

Adaptive Control achieves performance fastest, but wastes power.
ML reaches target performance slowest, but saves power

25

Managing Application and System
Resources Concurrently

25

Application Goals

System Actions

Experiment

Manage multiple applications when clock frequency changes

bodytrack: maintain performance, minimize power

x264: maintain performance, minimize quality loss

Change core allocation to both applications

Change x264’s algorithms

Maintain performance of both applications when
clock frequency changes

26

SEEC Management of Multiple Applications
In Response to a Power Cap

bodytrack x264

26

0

0.5

1

1.5

2

2.5

40 90 140 190 240
Time (Heartbeat)

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

0

1

2

3

4

5

6

7

C
o

re
s

bodytrack w/ adaptation

bodytrack

bodytrack cores
0

0.5

1

1.5

2

2.5

40 90 140 190 240
Time (Heartbeat)

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

0

1

2

3

4

5

6

7

C
o

re
s

x264 w/ adaptation
x264
x264 cores

Clock drops
2.4-1.6GHz w/o SEEC app

misses goals

SEEC allocates
cores to bodytrack

w/o SEEC app
exceeds goals

SEEC removes cores
from x264

SEEC adjusts algorithm
to meet goals

27

Outline

• Introduction/Motivation

• The SEEC Framework

• Experimental Validation

• Conclusions

27

28

Conclusions

• SEEC is designed to help ease programmer burden
– Solves resource allocation problems
– Adapts to fluctuations in environment and application behavior

• SEEC has two distinguishing features
– Decoupled Design

• Incorporates goals and feedback directly from the application
• Allows independent specification of adaptation

– General and Extensible Decision Engine
• Uses an adaptive second order control system to manage adaptation

• Demonstrated the benefits of SEEC in several experiments
– Optimize performance per Watt for multiple benchmarks on multiple

machines
– Adapts algorithms and resource allocation as environment changes

28

Thanks

• DARPA’s UHPC Program

• MIT, Politecnico di Milano, Freescale

• Martina Maggio, Marco D. Santambrogio, Jason E.
Miller, Jonathan Eastep

• Stelios Sidiroglou, Sasa Misailovic, Michael Carbin

• Anant Agarwal, Martin Rinard, Alberto Leva, Jim Holt

29

	The SEEC Framework and Runtime System
	In the beginning…*
	But Modern Systems Have Increased the Burden on Application Programmers
	Most Programming Models Designed for Performance
	SEEC Replaces Procedural Control with Self-Aware Control
	Outline
	The SElf-awarE Computing (SEEC) Model
	Example Self-Aware System �Built from SEEC
	Roles in SEEC’s Decoupled Model
	Registering Application Goals
	Registering System Actions
	The SEEC Decision Engine�(A general, extensible approach)
	The SEEC Decision Engine�(A general, extensible approach)
	The SEEC Decision Engine�(A general, extensible approach)
	The SEEC Decision Engine�(A general, extensible approach)
	Outline
	Systems Built with SEEC
	Systems Built with SEEC
	Constrained Optimization: �Managing Performance/Watt for PARSEC
	Performance/Watt for PARSEC�(On server with low idle power)
	Performance/Watt for PARSEC�(On server with high idle power)
	Learning Models Online
	SEEC Can Learn Models Online
	When System Models Are Wrong�(Breakdown)
	Managing Application and System Resources Concurrently
	SEEC Management of Multiple Applications�In Response to a Power Cap
	Outline
	Conclusions
	Thanks

