23 September 2010

Using Graphics Processors to
Accelerate Synthetic Aperture Sonar

Af\lllﬂf\l \'ln ' YW o Ilﬂlﬁf\lﬂﬁf\lf\ lf\lﬂ

maging via Backpropagation

2010 High Performance Embedded
Computing Workshop

Daniel P. Campbell, Daniel A. Cook
dan.campbell@gtri.gatech.edu

Georgia | Research
Tech IIsith tttu]ttce
GPU SAS -

Sonar Imaging via Backpropagation

©
=
@©
s
o
LL

Range (m)

As the sonar passes by the scene, it transmits pulses and records returns.
Each output pixel is computed by returns from the pulses for which it is within the
beamwidth (shown in red). A typical integration path is shown in yellow.

Georgia | Research
Tech)| Institute
= GPU SAS-2

Backpropagation

« Backpropagation is the simplest synthetic aperture
Image reconstruction algorithm

f(m) — /Eideal(Tpat)S(Tp,t) dl
¢
— / (5(7};,1& _ QR/C)gidea.l(Tpg t)S(Tp, t) dTpdt

for each output pixel:

— Find all pulses containing reflections from that
location on the ground

— Find recorded samples at each round-trip range
— Inner product with expected reflection
— Sum all of these data points

Georgla Resecarch
ech Imstitute
GPU SAS-

‘Backpropagation — Practical Advantages

 Procedure
. et bl
— Coprponeatotor Lpaetodonotion
— Form image using Feurier-based-methoed-backpropagation
. L oo Y

o Alnnrlfhmlr mmnlmn‘\/

T E FR R W e’ B R R B LI)

— EaS|er to code and troubleshoot
— Less accumulated numerical error

Flexibility

— Can image directly onto map coordinates without the need for
postprocessing (including bathymetric maps)

Expanded operating envelope

— Can form imagery in adverse environmental conditions and
during maneuvers

l==—

Georgia
e%h

Research
Imstituie
GPU SAS- 4

I L I
Sonar vs. Radar

* Typical SAS range/resolution: 100m/3cm
 Typical SAR range/resolution: 10km/0.3m
« SAS and SAR are mathematically equivalent,

allowing the same code to be used for both

— The sensor is in continual motion, so it moves while
the signal travels to and from the ground

e Light travels 200,000 times faster than sound, so
SAR processing can be accelerated by assuming the
platform is effectively stationary for each pulse.

l==—

Georgia
e%h

Research
Imstituie
GPU SAS-

Sonar vs. Radar

Ry
#
Rout VUsensor <~ C
trx #itrx
Rin —>Q
-< Rout
trx, trx " ::;3"; ::1:

In general, the sensor is at a different position by the time the signal is received
(above). If the propagation is very fast (i.e., speed of light), then the platform can
be considered motionless between transmit and receive (below).

Georgla Resecarch
ech Imstitute
GPU SAS- 6

Advantages of Backpropagation

« FFT-based reconstruction technigques exist
— Require either linear or circular collections
— Only modest deviations can be compensated
— Requires extra steps to get georeferenced imagery

« Backpropagation is far more expensive, but is the
most accurate approach

— No constraints on collection geometry: can image
during maneuvers

— Directly produces imagery located on any map
coordinates desired

l==—

Georgia
e%h

Research
Imstituie
GPU SAS-

_____________SmEEe
Minimum FLOPs

Range out 9
Estimated r/t time 1
Beam Check 5
Final receiver position 65

Final platform orientation 6

Construct platform final R 35

Apply R 15

Add platform motion 9
Range In 9
Range->Bin 2
Sample & Interpolate 9
Correlate with ideal reflector 9
Accumulate
Total

Georgia | Research
Tech ||| Institurte

Minimum FLOPs

Range out
Estimated r/t time

Range->Bin

Sample & Interpolate
Correlate with ideal reflector
Accumulate

Total

Georgia [& Resecarch

Tech | Institute

=

Minimum FLOPs

Ran ge o ut I\:%tr r|]:eeaeddaerd
Estimated r/t time

Range->Bin

Sample & Interpolate
Correlate with ideal reflector
Accumulate

Total

Georgia [& Resecarch

Tech | Institute

=

E— | | 1 1]
GPU Backpropagation

« GTRI SAR/S Toolbox, MATLAB Based

Multiple image formations
Backpropagation too slow

« GPU Accelerated plug-in to MATLAB toolbox
« CUDA/C++

« One output pixel per thread

« Stream groups of pulses to GPU memory

« Kernel invocation per pulse group

l==—

Georgia
e%h

Research
Imstituie
GPU SAS-1

I—— | | 1 1]
Direct Optimization Considerations

Textures for clamped, interpolated sampling
2-D blocks for range (thus cache) coherency
Careful control of register spills

° anoueu IIIEHIUIy IUI \bUIIIE) IULdI VdIIdUIEb
Reduced precision transcendentals

Recalculate versus lookup
Limit index arithmetic

I=——

Georgia
e%h

Research
Imstituie
GPU SAS-1

GPU Ocelot

Courtesy, Computer Architecture and Systems Laboratory, Georgia Tech PTX Emulation
http://www.ece.qgatech.edu/research/labs/casl/index.html

x86

PTX Kernel Ocelot - PTX Translator

GPU Execution

P Ix

Control flow Dominator
analysis Analysis

Data flow
analysis
IBM Cell, x86 multicore, OpenCL
G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: A Dynamic Optimizing Compiler for
Bulk Synchronous Applications in Heterogeneous Systems,” IEEE/ACM International Conference

on Parallel Architectures and Compilation Techniques, September 2010.

Georgia | Research
Tech ||| Institurte

GPU SAS- 1

I—— | | 1 1]
Productivity Tools for Hybrid Systems

\'\'/m L/m _______ i] = Debugging

= Memory race detection
ﬂ = Bounds checks

OcelotD namic Executioﬁ .
/nfmstfucture | m Profiling/Performance

Tuning
= Alignment behavior
= Control flow behavior
m Inter-thread data flow

= Integration with Front-End
profiling tools

s GLIMPSES (S. Pande)

GPU SAS- 14

Research
[Mnstiturte

l==—

Georgia
e%h

Ocelot data

Georgia | Research
Tech ||| Institurte

—— | | L]
Ocelot Findings

GPU SAS- 16

Georgia | Research
Tech ||| Institurte

—— | | L]
Ocelot Findings

82.25 FLOPS per
pixel*pulse, too high

Research
[Mnstiturte

l==—

Georgia
e%h

GPU SAS-1

Ocelot Findings

82.25 FLOPS per
pixel*pulse, too high

calcl();
calc2();
if (a<constant) ({..

25% Speedup

Georgla Resecarch
ech Imstitute

GPU SAS- 18

Ocelot Findings

82.25 FLOPS per
pixel*pulse, too high

calcl();
calc2();
if (a<constant) ({..

25% Speedup

Georgla Resecarch
ech Imstitute

GPU SAS- 19

Ocelot Findings

82.25 FLOPS per
pixel*pulse, too high

calcl();
calc2();
if (a<constant) ({..

25% Speedup

tyx = ThreadIdx.x * BLOCK
+ ThreadIdx.y;
share[tyx] = foo;

5% Speedup

Georgia [& Resecarch

[Mnstiturte
& GPU SAS- 20

Tech

—— | | L]
Performance versus Image Size

Critically sampled - GTX480
4.5E+9 16

3.5E+9
/ - 12

3.0E+9

2.5E+9

2.0E+9
/ 6

1.5E+9
/ -4

1.0E+9

5.0E+8 // F 2
0.0E+0 0

512 1024 1536 2048 2560 3072 3584 3936

pp/s
(o]
Run time(s)

Image Size (edge pixels)

pp/s ===Run time (S)

Research
Irsititute
GPU SAS-2

Georgia
e%h

l==—

—— | | L]
Strong Scaling Results

Performance with 1-8 GPUs, single node
3936 x 3936 image, 3936 input pulses, 1-8 Tesla C1060
12.0E+9 40

- 35

10.0E+9
- 30
8.0E+9

o - 25
2
1) (]
o 6.0E+9 20 E
D— R
[
z
15
4.0E+9
10
2.0E+9 ‘.é—
-5
000.0E+0 T T T T : : : 0
1 2 3 4 5 6 7 8
GPUs
pp/s pp/s/lg =®=Run time

Georgia
e%h

l==—

Research
Irsititute
GPU SAS-2

Performance — Alternate Configurations

14.78 4.13E+9

Stop & Hop 12.82 4.76E+9
Ilgnore Beam 22.81 2.67E+9 111 296.73E+9
SAR (S&H+IB) 16.52 3.69E+9 32 118.12E+9

« 3936 x 3936 Image from 3936 pulses
« Alternate configurations not optimized
« GTX 480

l==—

Georgia
e%h

Research
Irsititute
GPU SAS- 2

_____________SmEEe
Future Work

« Further optimization

« Reoptimize for Fermi

« Tune for multi-GPU

e Multi-node

« Improve error handling, edge cases, etc.
« Backpropagation server

l==—

Georgia
e%h

Research
Imstituie
GPU SAS - 24

