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Abstract 
This paper describes the use of graphics processors to 
accelerate the backpropagation method of forming images 
in Synthetic Aperture Sonar (SAS) systems.  A GPU-based 
implementation of backpropagation was developed at GTRI 
and inserted into sonar and radar algorithm research testbed 
systems. The GPU accelerated implementation formed a 
4000 x 4400 SAS image from 60 seconds of sonar data in 7 
seconds, which was hundreds of thousands of times faster 
than the baseline testbed implementation developed in 
MATLAB, and 275x faster than a C-based implementation 
executing on an 8-core i7 platform. 

Sonar Backpropagation 
The classical approach to both radar and sonar synthetic 
aperture image reconstruction is backprojection, or 
backpropagation.  The scheme is straightforward.  Each 
point in the scene being imaged contributes reflections to 
throughout the recorded data, and has a unique locus of 
echo returns in the observed data.  To compute the value of 
a single output pixel in the reconstructed image, all that is 
required is to integrate the data along this locus while 
multiplying by the complex conjugate of the expected 
locus2.  This operation has the form of an inner product, and 
the reconstructed image can the thought of as resulting from 
a spatially-varying correlation operation.  The inner product 
measures how similar the measured data is to the expected 
locus, with a strong correspondence resulting in a bright 
pixel. To obtain the equation for the backpropagation, 
consider the ideal locus for a single point scatterer at 

[ ]Tx y z=x , denoted by ( , , )t u xl , which also depends 

on  the time of recording t  and the along-track position of 
the sensor u .   The integration is performed over the locus 

given by the curve L : 

 c( ) ( ) ( ) .
L

f E E dδ= ∫x l l l  

As a concrete example, consider the ideal case in which the 
sensor trajectory is a straight line.  The resulting locus L  is 
a hyperbola: 

 2 2( )L x y u= + − . 

This style of collection is known as stripmap imaging.  It is 
a special case for which the much faster -kω 3 Fourier-
based reconstruction technique may be used.  The primary 
limitation of -kω  is that a separate motion compensation 
step must be performed if the sensor does not fly a perfectly 
straight line.  Motion compensation is not a problem for 
small perturbations of the flight path, but large distortions 
result in useless data.  In addition, the motion compensation 

works best for sonars with narrow beams.  Wide beam 
sensors are also of interest, but motion compensation 
processing can limit their operating envelope in terms of 
tolerable deviations from straight-line flight1.    Lastly, the 
typical platform speed (1.5 m/s) is an appreciable fraction 
of speed of sound underwater (1,500 m/s), so image 
reconstruction algorithms must account for sensor motion 
between transmission and reception.   

Backpropagation for image reconstruction bypasses the 
limitations described above and enables the achievement of 
the best quality imagery that can be produced by the sensor.  
While computationally expensive, backpropagation actually 
simplifies the processing chain because it obviates the need 
for several pre- and post-processing steps.  Most notably, 
backpropagation incorporates both motion compensation 
and georeferencing to any desired coordinate system. 

Accelerated Application 
GTRI maintains a MATLAB-based synthetic aperture 
processing toolbox that supports study of new approaches 
for radar and sonar knowledge extraction.  This toolbox 
includes an array of primitives to support experimental and 
prototype processing approaches,  For any but the smallest 
output images, execution time for the backpropagation 
model are prohibitive.  A test 4400 x 4000 image formation 
was estimated to take over 50 days with the toolbox 
executing on an Intel i7 based platform.  Such runtimes 
require that algorithm prototyping be done with small 
images, inferior approaches, or long test and iterate cycles. 

In order to improve the ability of algorithm researchers to 
explore new approaches, and to facilitate transition to 
deployable systems, we created an accelerated version of 
the backpropagation image formation module of the 
toolbox.  The accelerated software exploits GPUs to form 
images much more quickly than the MATLAB version, 
allowing algorithm researchers to maintain a rapid 
prototype cycle while working with large images, and using 
the most flexible and accurate image formation approaches. 

Accelerated Implementation 
Backpropagation is well suited to parallelization on many 
platforms. While the mathematical operations to form the 
image are embarrassingly parallel, each input datum is used 
by many output points, and the relationship between output 
point location and input data used is non-linear.  It is 
therefore straightforward to create an implementation of 
backpropagation that benefits from parallelism, but 
challenging to fully optimize it for a specific platform.   

Despite the non-linear mapping of input data to output 
points, the relationship is spatially coherent.  For a given 
pulse of return data, nearby output pixels have similar total 



propagation distance, and the therefore depend on sample 
points that are the same, or adjacent in memory.  This 
enables backpropagation implementations to benefit from 
traditional caches, particularly those that are organized for 
two dimensional coherency, such as those used in GPUs. 

Our implementation of the SAS image formation module is 
accelerated with nVidia GPUs, and was developed using 
CUDA.  The implementation uses one thread per output 
pixel, with two-dimensional blocks to improve intra-block 
range coherency.  Each thread loops over the input pulses, 
and accumulates correlated output as it traverses the input 
set.  Linear interpolation of return data is implemented with 
texture sampling operations to exploit dedicated logic.  Our 
implementation accelerated the formation of a test image 
from an estimated 50 days using the original software to 48 
seconds on an nVidia 280GTX-enhanced workstation, and 
under 7 seconds using a dual Tesla S1070-enhanced server. 

Our initial, naïve implementation yielded a significant 
speedup from the MATLAB version, but we added several 
additional optimizations to further improve execution times.  
Some of the most significant are described below. 

The biggest improvement came from elimination of register 
spills.  The current CUDA toolchain uses global memory, 
which has access latency of several hundred cycles, as 
register spill space, instead of attempting to use shared 
memory.  Because the number of registers used by a kernel 
can limit the number of concurrent threads on a 
multiprocessor, it is often beneficial to instruct the CUDA 
compiler to limit register usage.  We found that this practice 
led to register spills, causing inner loop variables to be 
temporarily stored in global memory.  Instead, we 
selectively changed local variables to shared memory 
arrays.  Additionally, we found that some calls to 
trigonometric functions resulted in register spills.  These 
were corrected by using the reduced precision equivalents. 

We used texture sampling to improve the performance of 
the linear interpolation.  Once the propagation distance for a 
pixel-pulse has been calculated, that range must be checked 
against the bounds of the pulse return data, and  converted 
to a real-numbered sample index.  The data are linearly 
interpolated for an estimated return for the pixel.  This step 
requires 6 flops and 2 memory reads for each of real and 
imaginary return data, but is nearly identical to graphical 
texture mapping which is supported by dedicated bounds 
checking, interpolation, and caching logic on GPUs. 

GPU memory accesses can be very expensive relative to 
math operations, especially in terms of foregone math 
operations.  As a result, the balancing point between best 
use of precalculation and lookup versus recalculation on the 
fly can differ from general purpose processors.  For 
example, we found that precalculating the transmitter 
position, which is shared for all pixels on a given pulse, did 
not significantly improve execution time.  

Performance Testing & Results 
We tested the software on a platform with two Intel 
Nehalem-based quad core processors operating at 2.4GHz, 
and two Tesla S1070.  We formed a 4400 x 4000 pixel 
output image from data sets containing 4000 pulses each.   

The input data for each image corresponded to sonar data 
collected over a period of approximately 60 seconds.  The 
data used were collected by the SAS12 system, which was 
constructed under the sponsorship of the Office of Naval 
Research4, 5.  We tested using from one to all of the eight 
available GPUs, as well as using all eight available CPU 
cores for a lightly optimized C-based implementation.  We 
also tested the formation of a single, representative column 
of pixels near the center of the image using the MATLAB 
implementation to estimate its total runtime.    The initial 
launch of the GPU module incurred a startup delay that is 
not repeated on subsequent images.  We report results for 
freshly started and pre-warmed state.   

The measured runtimes are summarized in Table 1, below.  
Flops/s was estimated by treating square roots, divisions, 
and trigonometric functions as single floating point 
operations. Under these assumptions, the minimum flops 
per output pixel was 102 per input pulse for SAS.  Synthetic 
aperture radar is similar to SAS, but the much higher ratio 
of propagation speed to platform speed allows 
simplifications that reduce that number to 34.  

  Runtime (s)   

GPUs Pre-warm Fresh flops/s 

1 40.41 44.40 177.7E+9 

2 21.08 24.97 340.6E+9 

4 11.35 15.41 632.7E+9 

8 7.02 11.04 1.0E+12 

0 (8xCPU) 1931 1931 3.7E+9 

0 (Matlab) 4320000 4320000 1.7E+6 

Table 1 - Benchmark Results 

These results showed a speedup of approximately 275x for 
our implementation relative to a lightly optimized, 8-core C 
based implementation, and a speedup of several hundred 
thousand times relative to the original MATLAB software.  
We found that our implementation scaled fairly well up to 8 
GPUs, achieving 72% linear speedup. 
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