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Abstract works best for sonars with narrow beams. Wide beam
This paper describes the use of graphics procegsorsSensors are also of interest, but motion compersati
accelerate the backpropagation method of forminggies Processing can limit their operating envelope immee of

in Synthetic Aperture Sonar (SAS) systems. A GRiSell tolerable deviations from straight-line flight Lastly, the
implementation of backpropagation was develope@®rl  typical platform speed (1.5 m/s) is an apprecidietion

and inserted into sonar and radar algorithm rebeastbed Of speed of sound underwater (1,500 m/s), so image
systems. The GPU accelerated implementation formedreconstruction algorithms must account for sensotion
4000 x 4400 SAS image from 60 seconds of sonaridata between transmission and reception.

seconds, which was hundreds of thousands of tim&erf pgackpropagation for image reconstruction bypasses t
than the baseline testbed implementation developed |imitations described above and enables the achiee of
MATLAB, and 275x faster than a C-based implemeotati e pest quality imagery that can be produced bysensor.
executing on an 8-core i7 platform. While computationally expensive, backpropagatiomiaty
Sonar Backpropagation simplifies the processing chain beeause it obvititesneed
The classical approach to both radar and sonahstjot for several pre- apd post-processing steps. Motbiy, .
aperture image reconstruction is backprojection, &ackpropagatlon_ mcorporates_ both mo_t|on compemisati
backpropagation. The scheme is straightforwardachE and georeferencing to any desired coordinate system
point in the scene being imaged contributes refiestto A ccelerated Application

throughout the recorded data, and has a uniqueslofu GTR| maintains a MATLAB-based synthetic aperture
echo retumns in the observed data. To computedhe of  ,cessing toolbox that supports study of new aqugtes
a single output pixel in the reconstructed imagdethat is  for radar and sonar knowledge extraction. Thislbmo
required is to integrate the data along this lowtsle .0 \ydes an array of primitives to support experitaéand

multiplying by the complex conjugate of the expecteh qiotype processing approaches, For any butrtielest
locus’. This operation has the form of an inner prodant output images, execution time for the backpropagati

the reconstructed image can the thought of astiegdfom  ,q4ge| are prohibitive. A test 4400 x 4000 imagenfation

a spatially-varying correlation operation. Thednproduct ,,s estimated to take over 50 days with the toolbox
measures how similar the measured data is to theceed executing on an Intel i7 based platform. Such inves
Iecus, with a etrong correspondence resulting ibright. require that algorithm prototyping be done with Bma
pixel. To obtain the equation for the backpropagati jmages; inferior approaches, or long test andtitergcles.

consider the ideal locus for a single point scattest
— T . In order to improve the ability of algorithm resefaers to
x =[xy 7, denoted by/(t,u,X), which also depends explore new approaches, and to facilitate tramsitio

on the time of recording and the along-track position of geployable systems, we created an acceleratedowedsi
the sensol. The integration is performed over the locushe backpropagation image formation module of the

given by the curvel_: toolbox. The accelerated software exploits GPU$otm
_ images much more quickly than the MATLAB version,
f(x)= j E;(0)E. () de. allowing algorithm researchers to maintain a rapid

L prototype cycle while working with large imagesgdarsing

As a concrete example, consider the ideal casehiohthe the most flexible and accurate image formation apgies.

sensor trajectory is a straight line. The resgltocus L is Accelerated | mplementation

a hyperbola: Backpropagation is well suited to parallelizatiom many
2 2 platforms. While the mathematical operations tarfdhe
L=yX"+(y-u)". image are embarrassingly parallel, each input dasunsed
This style of collection is known as stripmap inragi It is ggima{&gﬁéﬁmaﬁzmit:b&n% ;?ae rueslzgo?ss hé%f_ﬁ;“g?;t
a special case for which the much fasterk * Fourier-  therefore straightforward to create an implemeotatof
based reconstruction technique may be used. Theary packpropagation that benefits from parallelism, but
limitation of c-K is that a separate motion compensatioghallenging to fully optimize it for a specific plarm.
step must be performed if the sensor does not figréectly
straight line. Motion compensation is not a prabléor
small perturbations of the flight path, but largstaitions
result in useless data. In addition, the motiompensation

Despite the non-linear mapping of input data topaut
points, the relationship is spatially coherent.r Bogiven
pulse of return data, nearby output pixels havélairtotal



propagation distance, and the therefore dependaomple
points that are the same, or adjacent in memorhis T
enables backpropagation implementations to beffrefib
traditional caches, particularly those that areaaized for
two dimensional coherency, such as those used WsGP

Our implementation of the SAS image formation medsl
accelerated with nVidia GPUs, and was developedgusi
CUDA. The implementation uses one thread per dutp
pixel, with two-dimensional blocks to improve irtoéock
range coherency. Each thread loops over the ippises,
and accumulates correlated output as it travefsesnput
set. Linear interpolation of return data is impésrted with
texture sampling operations to exploit dedicategido Our
implementation accelerated the formation of a testge
from an estimated 50 days using the original saftvia 48
seconds on an nVidia 280GTX-enhanced workstatiad, a
under 7 seconds using a dual Tesla S1070-enhaapest s

Our initial, naive implementation yielded a sigodt
speedup from the MATLAB version, but we added salver
additional optimizations to further improve exeoutitimes.
Some of the most significant are described below.

The input data for each image corresponded to sdatar
collected over a period of approximately 60 secon@ibe
data used were collected by the SAS12 system, whih
constructed under the sponsorship of the OfficéNafal
Research®> We tested using from one to all of the eight
available GPUs, as well as using all eight avadaBGPU
cores for a lightly optimized C-based implementatioNe
also tested the formation of a single, represamatolumn
f pixels near the center of the image using theTlUAB

implementation to estimate its total runtime. eTihitial
launch of the GPU module incurred a startup defey ts
not repeated on subsequent images. We reportgdsul
freshly started and pre-warmed state.

The measured runtimes are summarized in Tablelawbe
Flops/s was estimated by treating square rootssidis,
and trigonometric functions as single floating foin
operations. Under these assumptions, the minimamps fl
per output pixel was 102 per input pulse for SAynthetic
aperture radar is similar to SAS, but the much &igfatio

The biggest improvement came from elimination gjfister

spills. The current CUDA toolchain uses global noeyn

which has access latency of several hundred cyealss,

register spill space, instead of attempting to sbared
memory. Because the number of registers usedKeyreel

can limit the number of concurrent threads on

multiprocessor, it is often beneficial to instribe CUDA

compiler to limit register usage. We found thas hractice
led to register spills, causing inner loop variabte be

temporarily stored in global memory. Instead, wi

of propagation speed to platform speed allows
simplifications that reduce that number to 34.
Runtime (s)

GPUs Pre-warm | Fresh flops/s

1 40.41 44.40 | 177.7E+9

2 21.08 24.97 | 340.6E+9
a 4 11.35 15.41 | 632.7E+9

8 7.02 11.04 1.0E+12

0 (8xCPU) 1931 1931 3.7E+9

e 0 (Matlab) | 4320000 | 4320000 1.7E+6

selectively changed local variables to shared mgmo
arrays.  Additionally,
trigonometric functions resulted in register spillShese
were corrected by using the reduced precision edgrivs.

We used texture sampling to improve the performanfce
the linear interpolation. Once the propagatiomagise for a
pixel-pulse has been calculated, that range mushbeked
against the bounds of the pulse return data, amaverted
to a real-numbered sample index. The data arearline
interpolated for an estimated return for the pix€his step
requires 6 flops and 2 memory reads for each dfaed
imaginary return data, but is nearly identical ragahical
texture mapping which is supported by dedicatedndeu
checking, interpolation, and caching logic on GPUs.

GPU memory accesses can be very expensive relative
math operations, especially in terms of foregonethma
operations. As a result, the balancing point betwbest
use of precalculation and lookup versus recalauabin the

fly can differ from general purpose processors. r Fo

example, we found that precalculating the transmitt
position, which is shared for all pixels on a giyarise, did
not significantly improve execution time.

Performance Testing & Results

We tested the software on a platform with two Intel

Nehalem-based quad core processors operating @Hz,4
and two Tesla S1070. We formed a 4400 x 4000 pix
output image from data sets containing 4000 puéses.

r Table 1 - Benchmark Results

we found that some calls to

These results showed a speedup of approximately ®#5
our implementation relative to a lightly optimize®icore C
based implementation, and a speedup of severalrédind
thousand times relative to the original MATLAB sedtre.
We found that our implementation scaled fairly wedlto 8
GPUs, achieving 72% linear speedup.
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