
Using Graphics Processors to Accelerate Synthetic Aperture Sonar
Imaging via Backpropagation

Daniel P. Campbell, Daniel A. Cook
Georgia Tech Research Institute / Sensors and Electromagnetic Applications Laboratory

{dan.campbell, dan.cook}@gtri.gatech.edu

Abstract
This paper describes the use of graphics processors to
accelerate the backpropagation method of forming images
in Synthetic Aperture Sonar (SAS) systems. A GPU-based
implementation of backpropagation was developed at GTRI
and inserted into sonar and radar algorithm research testbed
systems. The GPU accelerated implementation formed a
4000 x 4400 SAS image from 60 seconds of sonar data in 7
seconds, which was hundreds of thousands of times faster
than the baseline testbed implementation developed in
MATLAB, and 275x faster than a C-based implementation
executing on an 8-core i7 platform.

Sonar Backpropagation
The classical approach to both radar and sonar synthetic
aperture image reconstruction is backprojection, or
backpropagation. The scheme is straightforward. Each
point in the scene being imaged contributes reflections to
throughout the recorded data, and has a unique locus of
echo returns in the observed data. To compute the value of
a single output pixel in the reconstructed image, all that is
required is to integrate the data along this locus while
multiplying by the complex conjugate of the expected
locus2. This operation has the form of an inner product, and
the reconstructed image can the thought of as resulting from
a spatially-varying correlation operation. The inner product
measures how similar the measured data is to the expected
locus, with a strong correspondence resulting in a bright
pixel. To obtain the equation for the backpropagation,
consider the ideal locus for a single point scatterer at

[]Tx y z=x , denoted by (, ,)t u xl , which also depends

on the time of recording t and the along-track position of
the sensor u . The integration is performed over the locus

given by the curve L :

 c() () () .
L

f E E dδ= ∫x l l l

As a concrete example, consider the ideal case in which the
sensor trajectory is a straight line. The resulting locus L is
a hyperbola:

 2 2()L x y u= + − .

This style of collection is known as stripmap imaging. It is
a special case for which the much faster -kω 3 Fourier-
based reconstruction technique may be used. The primary
limitation of -kω is that a separate motion compensation
step must be performed if the sensor does not fly a perfectly
straight line. Motion compensation is not a problem for
small perturbations of the flight path, but large distortions
result in useless data. In addition, the motion compensation

works best for sonars with narrow beams. Wide beam
sensors are also of interest, but motion compensation
processing can limit their operating envelope in terms of
tolerable deviations from straight-line flight1. Lastly, the
typical platform speed (1.5 m/s) is an appreciable fraction
of speed of sound underwater (1,500 m/s), so image
reconstruction algorithms must account for sensor motion
between transmission and reception.

Backpropagation for image reconstruction bypasses the
limitations described above and enables the achievement of
the best quality imagery that can be produced by the sensor.
While computationally expensive, backpropagation actually
simplifies the processing chain because it obviates the need
for several pre- and post-processing steps. Most notably,
backpropagation incorporates both motion compensation
and georeferencing to any desired coordinate system.

Accelerated Application
GTRI maintains a MATLAB-based synthetic aperture
processing toolbox that supports study of new approaches
for radar and sonar knowledge extraction. This toolbox
includes an array of primitives to support experimental and
prototype processing approaches, For any but the smallest
output images, execution time for the backpropagation
model are prohibitive. A test 4400 x 4000 image formation
was estimated to take over 50 days with the toolbox
executing on an Intel i7 based platform. Such runtimes
require that algorithm prototyping be done with small
images, inferior approaches, or long test and iterate cycles.

In order to improve the ability of algorithm researchers to
explore new approaches, and to facilitate transition to
deployable systems, we created an accelerated version of
the backpropagation image formation module of the
toolbox. The accelerated software exploits GPUs to form
images much more quickly than the MATLAB version,
allowing algorithm researchers to maintain a rapid
prototype cycle while working with large images, and using
the most flexible and accurate image formation approaches.

Accelerated Implementation
Backpropagation is well suited to parallelization on many
platforms. While the mathematical operations to form the
image are embarrassingly parallel, each input datum is used
by many output points, and the relationship between output
point location and input data used is non-linear. It is
therefore straightforward to create an implementation of
backpropagation that benefits from parallelism, but
challenging to fully optimize it for a specific platform.

Despite the non-linear mapping of input data to output
points, the relationship is spatially coherent. For a given
pulse of return data, nearby output pixels have similar total

propagation distance, and the therefore depend on sample
points that are the same, or adjacent in memory. This
enables backpropagation implementations to benefit from
traditional caches, particularly those that are organized for
two dimensional coherency, such as those used in GPUs.

Our implementation of the SAS image formation module is
accelerated with nVidia GPUs, and was developed using
CUDA. The implementation uses one thread per output
pixel, with two-dimensional blocks to improve intra-block
range coherency. Each thread loops over the input pulses,
and accumulates correlated output as it traverses the input
set. Linear interpolation of return data is implemented with
texture sampling operations to exploit dedicated logic. Our
implementation accelerated the formation of a test image
from an estimated 50 days using the original software to 48
seconds on an nVidia 280GTX-enhanced workstation, and
under 7 seconds using a dual Tesla S1070-enhanced server.

Our initial, naïve implementation yielded a significant
speedup from the MATLAB version, but we added several
additional optimizations to further improve execution times.
Some of the most significant are described below.

The biggest improvement came from elimination of register
spills. The current CUDA toolchain uses global memory,
which has access latency of several hundred cycles, as
register spill space, instead of attempting to use shared
memory. Because the number of registers used by a kernel
can limit the number of concurrent threads on a
multiprocessor, it is often beneficial to instruct the CUDA
compiler to limit register usage. We found that this practice
led to register spills, causing inner loop variables to be
temporarily stored in global memory. Instead, we
selectively changed local variables to shared memory
arrays. Additionally, we found that some calls to
trigonometric functions resulted in register spills. These
were corrected by using the reduced precision equivalents.

We used texture sampling to improve the performance of
the linear interpolation. Once the propagation distance for a
pixel-pulse has been calculated, that range must be checked
against the bounds of the pulse return data, and converted
to a real-numbered sample index. The data are linearly
interpolated for an estimated return for the pixel. This step
requires 6 flops and 2 memory reads for each of real and
imaginary return data, but is nearly identical to graphical
texture mapping which is supported by dedicated bounds
checking, interpolation, and caching logic on GPUs.

GPU memory accesses can be very expensive relative to
math operations, especially in terms of foregone math
operations. As a result, the balancing point between best
use of precalculation and lookup versus recalculation on the
fly can differ from general purpose processors. For
example, we found that precalculating the transmitter
position, which is shared for all pixels on a given pulse, did
not significantly improve execution time.

Performance Testing & Results
We tested the software on a platform with two Intel
Nehalem-based quad core processors operating at 2.4GHz,
and two Tesla S1070. We formed a 4400 x 4000 pixel
output image from data sets containing 4000 pulses each.

The input data for each image corresponded to sonar data
collected over a period of approximately 60 seconds. The
data used were collected by the SAS12 system, which was
constructed under the sponsorship of the Office of Naval
Research4, 5. We tested using from one to all of the eight
available GPUs, as well as using all eight available CPU
cores for a lightly optimized C-based implementation. We
also tested the formation of a single, representative column
of pixels near the center of the image using the MATLAB
implementation to estimate its total runtime. The initial
launch of the GPU module incurred a startup delay that is
not repeated on subsequent images. We report results for
freshly started and pre-warmed state.

The measured runtimes are summarized in Table 1, below.
Flops/s was estimated by treating square roots, divisions,
and trigonometric functions as single floating point
operations. Under these assumptions, the minimum flops
per output pixel was 102 per input pulse for SAS. Synthetic
aperture radar is similar to SAS, but the much higher ratio
of propagation speed to platform speed allows
simplifications that reduce that number to 34.

 Runtime (s)

GPUs Pre-warm Fresh flops/s

1 40.41 44.40 177.7E+9

2 21.08 24.97 340.6E+9

4 11.35 15.41 632.7E+9

8 7.02 11.04 1.0E+12

0 (8xCPU) 1931 1931 3.7E+9

0 (Matlab) 4320000 4320000 1.7E+6

Table 1 - Benchmark Results

These results showed a speedup of approximately 275x for
our implementation relative to a lightly optimized, 8-core C
based implementation, and a speedup of several hundred
thousand times relative to the original MATLAB software.
We found that our implementation scaled fairly well up to 8
GPUs, achieving 72% linear speedup.

References
[1] H. J. Callow, Signal Processing for Synthetic Aperture Sonar

Image Enhancement. PhD thesis, Department of Electrical
and Electronic Engineering, University of Canterbury,
Christchurch, New Zealand, 2003.

[2] D. A. Cook, “Synthetic Aperture Sonar Motion Estimation
and Compensation,” Master’s Thesis, School of Electrical
and Computer Engineering, Georgia Institute of Technology,
2007.

[3] D. W. Hawkins, Synthetic Aperture Imaging Algorithms:
with application to wide bandwidth sonar, PhD thesis,
Department of Electrical and Electronic Engineering,
University of Canterbury, Christchurch, New Zealand, 1996.

[4] A. D. Matthews, T. C. Montgomery, D. A. Cook, J. W.
Oeschger, and J. S. Stroud, “12.75-inch synthetic aperture
sonar (SAS), high resolution and automatic target
recognition,” in MTS/IEEE Oceans 2006 Boston, 2006.

[5] http://oceanexplorer.noaa.gov/explorations/08auvfest
/logs /mam19/may19.html

