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Graph Algorithms and Ubiquitous 
Commercial Applications

Graph Representation Applications
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Graph Representation Applications
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• Finding shortest or fastest paths on maps
• Communication, transportation, water supply, electricity, and 

traffic network optimization
O ti i i th f il/ k d li b ll ti• Optimizing paths for mail/package delivery, garbage collection, 
snow plowing, and street cleaning

• Planning for hospital, firehouse, police station, warehouse, shop, 
market, office and other building placements

• Routing robotsRouting robots
• Analyzing DNA and studying molecules in chemistry and physics
• Corporate scheduling, transaction processing, and resource 

allocation
• Social network analysis
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DoD Graph Algorithm Applications

Intelligence Information Analysis ISR Sensor Data Analysis

• Analysis of email, phone 
calls, financial transactions, 
travel, etc.

• Post-detection data analysis 
for knowledge extraction and 
decision supporttravel, etc.

– Very large data set analysis
– Established applications

decision support
– Large data set
– Real time operations
– Small processor size, 

weight, power, and cost
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weight, power, and cost
– New applications



Sparse Matrix Representation of Graph 
Algorithms

1 2

4 7 5
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• Many graph algorithms may be represented and solved with 
sparse matrix algorithms
S

x A xA

• Similar speed processing
– Data flow is identical

• Makes good graph processing instruction set
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– Useful tool for visualizing parallel operations



Dense and Sparse Matrix Multiplication 
on Commercial Processors

Sparse/Dense Matrix Multiply
Performance on One PowerPC

Sparse Matrix Multiply Performance 
on COTS Parallel Multiprocessors
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Commercial microprocessors 1000 
times inefficient in graph/sparse 
matrix operations in part due to 

Communication bandwidth limitations 
and other inefficiencies limit the 

performance improvements in COTS 
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p p
poorly matched processing flow.

p p
parallel processors.
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3-D Graph Processor Enabling Technology 
Developments

Cache-less Memory
High Bandwidth 3-D 

Communication Network
Accelerator Based 

ArchitectureProc. Cache Mem.

3 D GRAPH PROCESSOR

• Optimized for sparse matrix 
processing access patterns

• Dedicated VLSI computation 
modules

• 3D interconnect (3x)
• Randomized routing (6x) 3-D GRAPH PROCESSOR modules

• Systolic sorting technology
• 20x-100x throughput

Randomized routing (6x)
• Parallel paths (8x)
• 144x combined bandwidth while 

maintaining low power
• 1024 Nodes
• 75000 MSOPS*
• 10 MSOPS/Watt

Data/Algorithm Dependent  
Multi-Processor Mapping

Sparse Matrix Based
I t ti S t

Custom Low Power 
Circuits

Instruction Set
• Full custom design for 

critical circuitry (>5x power 
efficiency)

• Efficient load balancing and 
memory usage 

• Reduction in programming 
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*Million Sparse Operations Per Second

p g g
complexity via parallelizable array 
data structure 



Sparse Matrix Operations

Operation Distributions Comments
C = A +.* B Works with all 

supported matrix 
di t ib ti

Matrix multiply operation is the 
throughput driver for many important 
b h k h l ithdistributions benchmark graph algorithms.  
Processor architecture highly 
optimized for this operation.

C = A .± B
C = A .* B

A, B, and C has 
to have identical 
distribution

Dot operations performed within local 
memory.

C = A ./ B distribution

B = op(k,A) Works with all 
supported matrix 
distributions

Operation with matrix and constant.  
Can also be used to redistribute matrix 
and sum columns or rows.

• The +, -, *, and / operations can be replaced with any 
arithmetic or logical operators

– e g max min AND OR XOR– e.g. max, min, AND, OR, XOR, …
• Instruction set can efficiently support most graph 

algorithms
– Other peripheral operations performed by node controller
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Node  Processor Architecture

Node Processor Communication Network

Memory Bus

Matrix
Reader

Row/Column
Reader

Matrix
Writer

Matrix
ALU Sorter CommunicationNode

Controller

N d P

Control Bus

Memory Bus

Connection to
Global

C i ti
Connection toMemoryNode Processor Communication

Network
Global Control BusMemory

Accelerator based architecture for high throughput
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High Performance Systolic k-way Merge 
Sorter

4-way Merge Sorting Example
1 2 2 2 3 4 4 5 6 6 7 8 9 9 121

12 5 1 3 6 2 4 9 1 2 2 8 9 4 7 6

1 3 5 12 2 4 6 9 1 2 2 8 4 6 7 9

Systolic Merge Sorter
RS RS RS

• Sorting consists of >90% of graph 
processing using sparse matrix algebra

– For sorting indexes and identifying 
elements for accumulation

S

RB RB RB

RS RBIL IR• Systolic k-way merge sorter can increase 
the sorter throughput  >5x over 
conventional merge sorter

– 20x-100x throughput over microprocessor 
based sorting

Multiplexer Network

S B

Comparators & Logic

L R
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Communication Performance Comparison 
Between 2-D and 3-D Architectures

2-D 3-D

P 2 10 100 1,000 10,000 100,000 1,000,000

2 D 1 3 2 10 32 100 320 1 000

Normalized Bisection Bandwidth

2-D 1 3.2 10 32 100 320 1,000

3-D 1 4.6 22 100 460 2,200 10,000

3-D/2-D 1 1.4 2.2 3.1 4.6 6.9 10

• Significant bisection bandwidth advantage for 3-D 
architecture for large processor count
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3-D Packaging

Coupling
Connector

Stacked Processor
Boards

3-D Processor
Chassis

3-D Parallel
Processor

Cold Plate

Insulator
TX/RX Routing Layer

Heat Removal 
Layer

C li

Processor IC

Cold Plate

Coupler TX/RX

Coupling
Connectors

• Electro-magnetic coupling communication in vertical 
dimension

Enables 3 D packaging and short routing distances– Enables 3-D packaging and short routing distances
• 8x8x16 planned for initial prototype
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2-D and 3-D High Speed Low Power 
Communication Link Technology

2-D Communication Link 3-D Communication Link
Inductive Couplers

Current Mode TX/RX Signal Simulation

ud
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Coupler TX/RX

• High speed 2 D and 3 D communication achievable with low power
Time
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• High speed 2-D and 3-D communication achievable with low power
– >1000 Gbps per processor node compared to COTS typical 1-20 Gbps
– Only 1-2 Watts per node communication power consumption
– 2-D and 3-D links have same bit rate and similar power consumption

Power consumption is dominated by frequency multiplication and phase
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Power consumption is dominated by frequency multiplication and phase 
locking for which 2-D and 3-D links use common circuitry

• Test chip under fabrication



Randomized-Destination 3-D Toroidal 
Grid Communication Network

X Standby FIFO 1

Communications
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3:1 Y Standby FIFO 1

Simulation Results 3-D Toroidal Grid Node Router
Input Queue Size vs. Network 

Queue Size vs. Total Throughput 
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• Randomizing destinations of 
packets from source nodes 
d i ll i k

Node

Randomized Destination p
dramatically increases network 
efficiency

– Reduces contention
– Algorithms developed to break 

up and randomize any localities

…
Randomized Destination

• Randomized destination 
packet sequence

• 87% full network 
efficiency achieved

up and randomize any localities 
in communication patterns

• 6x network efficiency achieved 
over typical COTS multiprocessor 
networks with same link 
bandwidths

Unique Destination
• Unique destination for all 

packets from one source
• 15% full network
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bandwidths15% full network 
efficiency achieved



Hardware Supported Optimized 
Row/Column Segment Based Mapping

P P P P

P P P P

• Efficient distribution of matrix elements necessary

P P P P

P P P P

Efficient distribution of matrix elements necessary
– To balance processing load and memory usage

• Analytically optimized mapping algorithm developed
– Provides very well balanced processing loads when matrices y p g

or matrix distributions are known in advance
– Provides relatively robust load balancing when matrix 

distributions deviate from expected
– Complex mapping scheme enabled by hardware supportp pp g y pp

• Can use 3-D Graph Processor itself to optimize mapping in 
real time

– Fast computing of optimized mapping possible
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Hardware System Architecture
Programming, Control, and I/O Hardware 

and Software

Node Array

Node Array
Node Processor

Node Array

Node ArrayControllerHost

Kernel Optimization

Application Optimization

User Application

Command InterfaceCo-Processor Device 

Host API

p

Middleware Libraries

Node Command Interface

Master Execution KernelDriver Node Execution Kernel

Microcode Interface

Specialized Engines
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– Simulation
Performance projection– Performance projection

Computational throughput
Power efficiency
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Simulation and Verification

Node Array

Node Array
Node Processor

Node Array

Node ArrayControllerHost

• Bit level accurate simulation of 1024-node system used for 
functional verifications of sparse matrix processing

• Memory performance verified with commercial IP simulator
C f f• Computational module performance verified with process 
migration projection from existing circuitries

• 3-D and 2-D high speed communication performance 
verified with circuit simulation and test chip design
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verified with circuit simulation and test chip design



Performance  Estimates
(Scaled Problem Size, 4GB/processor)
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Close to 1000x graph algorithm computational throughput and 
100,000x power efficiency projected at 1024 processing nodes 

compared to the best COTS processor custom designed for graph 
processing
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processing.



Summary

• Graph processing critical to many commercial, DoD, and 
intelligence applicationsg pp

• Conventional processors perform poorly on graph 
algorithms

– Architecture poorly match to computational flow
• MIT LL h d l d l 3 D hit t ll• MIT LL has developed novel 3-D processor architecture well 

suited to graph processing
– Numerous innovations enabling efficient graph computing 

Sparse matrix based instruction setp
Cache-less accelerator based architecture
High speed systolic sorter processor
Randomized routing
3-D coupler based interconnect3 D coupler based interconnect
High-speed low-power custom circuitry
Efficient mapping for computational load/memory balancing

– Orders of magnitude higher performance projected/simulated
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