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Introduction
1
 

Graph algorithms are used for numerous database 

applications such as analysis of financial transactions, 

social networking patterns, and internet data.  While graph 

algorithms can work well with moderate size databases, 

processors often have difficulty providing sufficient 

throughput when the databases are large.  This is because 

the processor architectures are poorly matched to the graph 

computational flow.  For example, most modern processors 

utilize cache based memory in order to take advantage of 

highly localized memory access patterns.  However, 

memory access patterns associated with graph processing 

are often random in nature and can result in high cache miss 

rates.  In addition, graph algorithms require significant 

overhead computation for dealing with indices of vertices 

and edges.  Figure 1 shows example computational 

throughput differences between conventional processing 

and graph processing.  Shown in blue is a matrix multiply 

kernel running on the PowerPC and Intel Zeon processors.  

In contrast, shown in red is a graph edge traversal kernel 

running on the identical processors.  The graph computation 

throughput is approximately 1,000 times lower, which is 

consistent with typical application codes. 

 

Figure 1: Computational Throughput Differences 

between Conventional and Graph Processing. 

The multi-core processors can help the graph algorithms 

run faster by providing higher computational throughput.  

However, because commercial multi-core processors tend 

to rely on cache based memory architecture, the 
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performance gain tends to be limited.  Networked parallel 

processors can also accelerate graph processing by 

distributing computation over multiple processors.  

However, the speed up factor quickly levels off with a 

small number of processors due to immense inter-processor 

communication requirements generated by non-localized 

database structures. 

3-D Graph Processor Architecture 
In order to achieve significantly higher graph computation 

performance, MIT Lincoln Laboratory has developed an 

advanced multiprocessor architecture that is optimized for 

graph algorithms analyzing large databases.  The processor 

instruction set is based on sparse matrix algebra operations.  

The graph operations are first converted into sparse matrix 

operations before they are run on the processor [1].  

Although the computations are equivalent in both 

approaches, the sparse matrix approach simplifies both the 

instruction set and the multiprocessor architecture design. 

 

 

Figure 2: Sparse Matrix Representation of Graph. 

Graphs can be represented as sparse matrices as shown in 

Figure 2.  The graph G(V, E) with vertices V and edges E 

can be represented with the sparse matrix A where the 

matrix element Aij represents the edge between the vertex i 

and vertex j.  In this example, Aij is set to 1 when there is an 

edge between the vertices i and j.  If there is no edge 

between the vertices i and j, then Aij would be zero and thus 

would have no entry in the sparse matrix.  Once the graphs 

have been converted to the sparse matrix format, the sparse 

matrix operations can be used to implement the graph 

algorithms.  Important kernels include sparse matrix 

multiply, addition, subtraction, and division operations.  

Individual element level operators within these matrix 

operations, such as multiply and accumulate operators in 

the matrix multiply operation, may need be replaced with 

other arithmetic or logical operators such as maximum, 

minimum, AND, OR, XOR, etc. in order to implement 

general graph algorithms.  Numerous graph algorithms have 

already been converted to sparse matrix algorithms [1]. 

The new graph processor architecture is a parallel processor 

interconnected in 3-D toroidal configuration using very 



high bandwidth links [2] as shown in Figure 3.  The 3-D 

toroid provides much higher communication performance 

than 2-D toroid due to higher bisection bandwidth.  In order 

to minimize communication link lengths, the 2-D toroidal 

cluster is placed on a circuit board and multiple circuit 

boards are stacked on top of each other to form the 3-D 

toroid.  The links between the circuit boards are enabled by 

an array of electromagnetic coupling connectors [3] that can 

communicate at high data rates without requiring physical 

conductor connections.  Custom designed high-speed I/O 

circuitries provide high-bit-rate low-power communication 

for 2-D links within the board and 3-D links between the 

boards.  Each node processor is designed to be capable of 

over 1 trillion bits per second communication rate to keep 

up with the communication demands of graph algorithms. 

 

 

Figure 3: 3-D Graph Processor with Electromagnetic 

Coupling Communications between Processor Boards. 

The communication network is a packet routing network 

optimized to support small packet sizes that are as small as 

a single sparse matrix element.  The network scheduling 

and protocol are designed so that successive 

communication packets from a node would have 

randomized destinations in order to minimized network 

congestions [4].  This is a great contrast to typical multi-

processor message routing schemes that are based on much 

larger message sizes and globally arbitrated routing.  

According to the simulations, the randomized destination 

packet switching network can provide up to six times 

higher communication data rates for graph algorithms than 

conventional parallel processor networks with identical link 

bandwidths. 

The individual node processor architecture is also a great 

departure from cache-based von Neumann machines.  It 

utilizes specialized modules connected through a high 

bandwidth network as shown in Figure 3 [2].  There is no 

cache, since the cache miss rates tend to be high in graph 

processing.  Most of the sparse matrix computation is done 

by the specialized modules that are designed to optimally 

perform the given tasks.  The matrix reader and writer take 

care of all the overhead memory accesses required in 

dealing with the sparse matrix indices.  The sorter module 

is used for finding matching element indices for matrix 

operations and sorting results for storage.  This module is 

critical since over 95% of computational throughput can be 

associated sorting of indices.  The systolic k-way merge 

sorter architecture [5] was developed to provide up to an 

order of magnitude higher throughput than the conventional 

merge sorter.  The custom systolic sorter module can 

provide up to two orders of magnitude higher sorter 

throughput than prevailing microprocessor based sorting.  

Advanced process mapping algorithms and sparse matrix 

compiler are also being developed to optimize 

computational load balancing and to enable simplified user 

interface. 

 

 

Figure 4: Node Processor Architecture. 

Simulation and Performance Projection 
Detailed simulation of the architecture was performed to 

verify the design and to estimate the performance.  The bit-

level accurate simulation models were used to simulate the 

entire 1024-node processor running the graph algorithm 

kernels.  The performance projection was achieved by 

extrapolating the existing computation circuits to the target 

fabrication process at 60nm.  The new custom 

communication circuitry was developed to provide 3-D 

interconnect based on coupling connectors.  Figure 5 shows 

the computational throughput projections versus number of 

processor nodes assuming that the database size scales with 

the number of processors.  It is projected that the processor 

would provide several orders of magnitude higher graph 

computational throughput compared to the commercial 

alternatives.  The power efficiency was also projected to be 

several orders of magnitude higher. 

 

Figure 5: Performance Projection via Simulation. 
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