
Cl d C ti D t H dliCloud Computing, Data Handling
and HPEC Environments

Patrick Dreher
RENCI Chief Scientist Cloud Computing

NC State University Adjunct Professor of
Computer Science

Outline

• Introduction

• Overview basic cloud computing characteristics

Some characteristics for HPEC environments• Some characteristics for HPEC environments

• Large volumes of data – what does that mean?

• Single core versus multi-socket, multi core processors

• Closing comments and observations

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 29/16/2010

Introduction

• Many systems today consist of both remote sensors/instruments and
central site capabilitiescentral site capabilities

• Remote sensors/instruments are capable of generating multi-terabyte
data sets in a 24 hour period
C• Custom clouds architectures appear to have great flexibility and
scalability to process this data in an HPEC environment

• How and where should be data be stored analyzed and archived
• How best can this data be transformed into useful actionable information

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 39/16/2010

Basic Cloud Computing
Characteristics

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 49/16/2010

Basic Cloud Computer System Design Goals

• Reliable, secure, and fault-tolerant
• Data and process aware services
• Secure dropped-session recovery
• More efficient delivery to remote users
• Cost-effective to operate and maintain• Cost-effective to operate and maintain
• Ability for users to request specific HW platforms to build, save, modify,

run virtual computing environments and applications that are:
– Reusableeusab e
– Sustainable
– Scalable
– Customizable

• Root privileges (as required/authorized)
• Time and place independent access
• Full functionality via consumer devices and platforms

Copyright 2010 © Renaissance Computing Institute All rights reserved

y

9/16/2010 5Patrick Dreher, Chief Scientist

A List of Cloud Computing Characteristics
• An operational paradigm allowing the users to seamlessly and securely

provision and/or combine
– Computer hardwareComputer hardware
– Operating systems
– Application software
– Storageg
– Rich set of customizable services

• As a system that is scalable up, down, in, and out
– With resources accessible over a network
– Based on a service-oriented architecture

• With users controlling the options to reserve each equipment and service
capability on a mix-n-match component or unit basis

• Implication - Capability for on-demand provisioning provides the
appearance of infinite computing resources available on demand to rapidly
follow and adjust to load surges

Copyright 2010 © Renaissance Computing Institute All rights reserved

9/16/2010 6Patrick Dreher, Chief Scientist

Clouds Grouped by Services

• Hardware as a Service (HaaS) – On demand access to a
specific equipment configuration possibly at a particular site

• Infrastructure as a service (IaaS) – On demand access to user ()
specified hardware capabilities, performance and services which
may run on a variety on hardware products

• Platform as a Service (PaaS) - On-demand access to user ()
specified combination of hypervisors, operating systems and
middleware that enables applications and services

• Application as a Service (AaaS) - On-demand access to user
specified application(s)specified application(s)

• Software as a Service (SaaS) - may encompass anything from
PaaS through AaaS

• Cloud as a Service – On demand ability to construct a local• Cloud as a Service – On demand ability to construct a local
cloud within an overall cloud service

• Security as a Service – On-demand use of cloud configuration
for security of applications and systems

Copyright 2010 © Renaissance Computing Institute All rights reserved

for security of applications and systems

9/16/2010 7Patrick Dreher, Chief Scientist

HPEC Characteristics

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 89/16/2010

HPEC Design Parameters

• Usually designed to perform a limited number of dedicated functions
often with real time computing constraintsoften with real-time computing constraints

• Embedded systems mostly integrated within a larger device including
hardware and mechanical parts that serve a more general purpose

• The program instructions
– stored in read-only memory or flash memory chips
– run with limited computer hardware resources: little memory and small or

i t t k b d d/non-existent keyboard and/or screens

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 99/16/2010

Tradeoffs: Specificity versus Flexibility

• General purpose computational systems capable of multiple types of
taskstasks

• HPEC system configured more toward single/limited type of functionality
• Example of a system configured to do one type of function very well
• Supercomputer capability using mobile phone hardware• Supercomputer capability using mobile phone hardware
• Linpack benchmarks installed on mobile phones running Android OS

http://www.walkingrandomly.com/?cat=35
The benchmarks demonstrated that a tweaked Motorola Droid is• The benchmarks demonstrated that a tweaked Motorola Droid is
capable of scoring 52 Mflops i.e. 15X faster than the 1979 Cray 1 CPU

• This capability can be embedded in a larger overall system
• Appears very impressive but• Appears very impressive but ….
• Many real world problems and applications today are driven by data

…..lots of data

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 109/16/2010

Observations of Data Characteristics

• In both defense systems and academic research areas
– There are sensors and experimental laboratory equipment today that can

generate multi-terabyte data sets per day that need to be analyzed
– There are sophisticated SAR image processing and other persistent

surveillance platforms capable of producing daily multi-terabyte data sets

• Data processing pipelines need to be constructed to transform this data
into useable actionable information

• How can this compute components integrate with the data repositories?

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 119/16/2010

“Large” Volumes of DataLarge Volumes of Data

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 129/16/2010

Basics Design Questions For Data Handling with
Remote/Field and Central Site EnvironmentsRemote/Field and Central Site Environments

• What does it mean to have a “large volume” of data?
• Where is the data collected? (field, instruments, remote sensors, etc.)
• Where should data be stored?
• Where should the data be analyzed?
• Where should the data be archived?
• Can these multiple environments be integrated?• Can these multiple environments be integrated?
• Under what conditions

– Should a customized cloud cluster be constructed for analysis
If so where (HPEC site or central environment)– If so, where (HPEC site or central environment)

– Is it more effective for the data at remote sensors and instruments to be
transmitted to a central cloud site or analyzed remotely?

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 139/16/2010

Back of the Envelope Calculation –
Analyzing Data Processing Pipeline OptionsAnalyzing Data Processing Pipeline Options

• Using a simple naive toy model - compare the time to process at HPEC
site versus the centralized computation site
What conditions indicate remote or central site as the preferred analysis• What conditions indicate remote or central site as the preferred analysis
location

• Procedure -- Reduce the volume of data from V bytes to v bytes and
determine whether computation should be done at HPEC site or a
central cloud cluster

• Relationship between
– Execution rate (R)
– Data access bandwidth (B)– Data access bandwidth (B)
– Computational complexity (operations per byte) (η = R / B)

• For a balanced application on a given networked hardware platform
Complexity = Execution Rate / Bandwidth = 1p y

• Data is processed at HPEC location corresponds to low complexity
• Data is processed at central location corresponds to high complexity

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 149/16/2010

Design “Thought Experiment”
Parameters• Parameters
– Execution rate at HPEC site r
– Execution rate at central site R

B d idth t HPEC t B– Bandwidth at HPEC proc - storage BS-H

– Bandwidth HPEC – central site BH-C

– Ops/byte analysis at HPEC site ηA

O /b f f l i– Ops/byte for transfer to central site ηt

HPEC
Centralized

CloudData
HPEC Platform

Computation
(r)

Cloud
Cluster

(R)

Data
Storage BS-H BH-C

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 159/16/2010

Two Choices
• OPTION 1 - Cloud calculation and data reduction at HPEC site and then

transmit reduced data centralized cloud location
• Time for each discrete step• Time for each discrete step

– Reduce the data ηA V/ r
– Transmit the reduced data ηt v/ r
– Network transmission v/ BH-C

– Receive data ηt v/ R

HPEC/Remote Site Platform Central Site

Receive
Data

Read
Data

Reduce
Data

Transmit
Data

Network

HPEC/Remote Site Platform Central Site

DataData Data Data

V / BS-H ηA V / r ηt v / r v / BH-C ηt v / R

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 169/16/2010

Two Choices
• OPTION 2 -Transmit data from HPEC site and then calculate and

reduce data at centralized cloud location
• Time for each discrete step• Time for each discrete step

– Transmit the original data ηt V/ r
– Network transmission V/ BH-C

Recei e data V/ R– Receive data ηt V/ R
– Reduce the data ηA V/ R

HPEC/Remote Site Platform Central Site

Read
Data

Reduce
Data

Transmit
Data

Network Receive
Data

HPEC/Remote Site Platform Ce S e

ηt V / Rηt V / r V / BH-C ηA V / RV / BS-H

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 179/16/2010

Where to Analyze the Data

• The data should be processed at the remote HPEC site when the total
time at remote HPEC site total time at central sitetime at remote HPEC site < total time at central site
V/BS-H + ηA (V/r) + V / BH-C + ηt (v/r) + ηt v / R <

V / BS-H + ηt V / r + V / BH-C + ηt V / R + ηA V / R

• Define several scaling ratios
– Data size reduction ratio v / V
– Execution slow down ratio r / R
– Problem complexity ηt / ηA

– number of bytes/sec that can be processed (r / ηt) y p (ηt)
– Execution/Communication * r / (ηt BH-C)

* Optimal design r/(ηt BH-C) = 1

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 189/16/2010

Conditions
1

1 1 1 11
H C

t

B
v

R r V r R
η
η

− >
     − + + − −     
     

• Examine when the denominator changes sign

1 tR r
v R

η
 
  −  <   

  

BA R r V r Rη      

• Denominator > 0 implies better to move the data to central site

1 A
v R r
V

η   +  −
 

η
• Always do computation at HPEC site if and design flexible

scalable HPEC multi-socket, multi-core computing resources available
on demand to rapidly follow/adjust to load surges

1t

A

η
η

<

• This cannot be fully accurate because the actual HW systems are more
complex and require some additional perspectives

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 199/16/2010

Traditional Memory Performance Metrics in
Computational SystemsComputational Systems

• Processing large data sets requires ability to rapidly analyze this stored
informationinformation

• Most characterization methods for memory performance use two
measures, memory latency and bandwidth *
– Memory read latency is the time between from issuance of a memory request y y y q

and the moment when the data is available in the CPU
– Memory bandwidth is the rate, usually expressed in bytes per second, at which a

sequence of reads, writes, or some mix can transfer data between memory and
the CPU. e C U

• Both measures depend on a set of complex factors and vary greatly
depending on offered load within a system

* System memory performance characterizations usually measured with LMBench and
STREAM benchmarks

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 209/16/2010

Multi-Socket-Multi-Core Systems
• Multi-socket, multi-core (MSMC) blades and servers now dominate the

options for cloud computation systems
• These systems exhibit complicated bottlenecks at several levelsThese systems exhibit complicated bottlenecks at several levels
• MSMC Characteristics

– Multi-core processors exploit parallelism with multiple threads
– Faster processors now available but memory cell speed has been nearlyFaster processors now available but memory cell speed has been nearly

constant
– Multi-core systems are becoming increasingly memory-bound
– Increasing # of cores -> decreasing memory bandwidth / core
– Increasing core count -> large # of concurrent memory accesses from

multi-threaded applications

• QUESTION: Can the MSMC computational HW improvements and
rapidly expanding data sets be a problem for proposedrapidly expanding data sets be a problem for proposed
computationally intensive custom cloud HPEC solution?

Copyright 2010 © Renaissance Computing Institute All rights reserved

9/16/2010 21Patrick Dreher, Chief Scientist

Memory Performance in
Multi-Socket Multi-Core SystemsMulti-Socket Multi-Core Systems

• Bandwidth and latency alone are not sufficient to characterize memory
performance of multi-socket multi-core systemsperformance of multi-socket, multi-core systems

• Ability of system to serve large number of concurrent memory
references is becoming a critical performance problem

• The assertion is that for multi-socket multi-core systems concurrencyThe assertion is that for multi socket, multi core systems concurrency
among memory operations and ability of system to handle that
concurrency are fundamental determinants of performance

• Concurrency depends on several factors
– how many outstanding cache misses each core can tolerate
– the number of memory controllers
– the number of concurrent operations supported by each controller
– memory communication channel design
– the number and design of each of the memory components

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 229/16/2010

Recent Studies on Concurrency
in Multi-Socket Multi-Core Systemsin Multi-Socket Multi-Core Systems

• There has been some in-depth analysis of issues of concurrency in
newer multi socket multi core computational systems at RENCI*newer multi-socket, multi-core computational systems at RENCI*

• In this work, Mandal et. al. treat memory concurrency as a fundamental
quantity for modeling memory behavior for multi-socket multi-core
systemssystems

* A. Mandal, R. Fowler and A. Porterfield, "Modeling Memory Concurrency
for Multi-Socket Multi-Core Systems", in Proceedings of the
IEEE I t ti l S i P f A l i f S t dIEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS'10), pp. 66-75, White Plains, NY, March 2010.

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 239/16/2010

Observed Impacts of Concurrency on MSMC

• In the multi-socket, multi-core domain, simple linear relationships
don’t hold true because these systems have non lineardon t hold true because these systems have non-linear
performance bottlenecks at several levels.

• There are multiple points at which memory requests saturate
different levels of the memory bandwidth no longer increasesdifferent levels of the memory - bandwidth no longer increases
with offered load.

• Memory optimization can be done by increasing the concurrency
of memory references rather than just by reducing the number ofof memory references rather than just by reducing the number of
operations.

• On multi-threaded systems, there are operation points in which
performance can increase by adding threads or by increasingperformance can increase by adding threads or by increasing
memory concurrency per thread, as well as other modes in which
increasing program concurrency only exacerbates a system
bottleneck.

Copyright 2010 © Renaissance Computing Institute All rights reserved

bottleneck.

Patrick Dreher, Chief Scientist 249/16/2010

Measuring Concurrency

• Use pChase – tool to measure concurrency (developed by Pase and
Eckl @IBM and available at http://pchase.org)g

• Multi-threaded benchmark used to test memory throughput under
carefully controlled degrees of concurrent accesses

• Each experimental run of pChase parameterized byEach experimental run of pChase parameterized by
– Memory requirement for each reference chain
– Number of concurrent miss chains per thread
– Number of threads.Number of threads.

• Page size, cache line size, number of iterations, access pattern kept
fixed with pCHASE extended to pin threads to cores and to perform
memory initialization after being pinnedmemory initialization after being pinned

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 259/16/2010

pChase Modifications by RENCI

• Each thread executes a controllable number of pseudo random ‘pointer-
chasing’ operations – memory-reference chain (defeats prefetching)chasing operations – memory-reference chain (defeats prefetching)
– pointer to the next memory location is stored in the current location
– results in concurrent cache misses -> concurrent memory requests

• Modifications by Mandal et alModifications by Mandal et. al.
– Added wrapper scripts around pChase to iterate over different numbers of

memory reference chains and threads thereby controlling memory
concurrency
Add d ffi it d t t l th d l t– Added affinity code to control thread placement

• Mandal et. al. tested the procedure on many different systems

A. Mandal, R. Fowler and A. Porterfield, "Modeling Memory
Concurrency for Multi-Socket Multi-Core Systems"

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 269/16/2010

QB3 -- Quad-socket, 6-core AMD Istanbul 2.1GHz processors in a Dell PowerEdge M905
(total of 24 cores) running CentOS Linux (2.6.32.7 kernel) with 16 dual-rank 2GB
DDR2/800 memory sticks (evenly loaded) for a total of 32GB with each socket having
8G memory available memory

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist
27

8G memory available memory

9/16/2010

Remarks About the Multi-Socket Multi-Core Tests

• All multi-socket multi-core systems exhibited similar types of behavior
• With low concurrency there would be speedups when increasing the

number of threads and/or number of sockets
• With higher increasing levels of concurrency cannot continue increasing

peak bandwidth for single socket and multi socket tests
• At some point, the additional cores do not increase the peak bandwidth

at all, but they do allow the peak to be reached with fewer offered
f h dconcurrent memory references per thread

• Reference full paper* for additional system measurements

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 289/16/2010

Remarks About GPUs HW Design
Versus MSMC Blades and ServersVersus MSMC Blades and Servers

• The MPPs, SMPs, and commodity clusters rely on data caches (small
amount of fast memory close to the processor) to contend with theamount of fast memory close to the processor) to contend with the
balance issue.

• Modern commodity processors have three levels of cache, with L3 (and
sometimes L2) shared among multiple coressometimes L2) shared among multiple cores.

• Today’s GPU hardware architectures are an attempt to re-gain better
memory bandwidth performance (ex. The NVIDIA GeForce GTX 285
has eight 64 bit banks delivering 159 GB/s)has eight 64-bit banks, delivering 159 GB/s)

• Compare today’s HW architectures to early vector machines that
delivered high bandwidth through a very wide memory bus (ex. memory
of the Cray X MP/4 (ca 1985) was arranged in 32 (64 bit) banksof the Cray X-MP/4 (ca. 1985) was arranged in 32 (64-bit) banks,
delivering 128 GB/s)

Copyright 2010 © Renaissance Computing Institute All rights reserved

•

• . Patrick Dreher, Chief Scientist 299/16/2010

Comments and Observations
• Memory bandwidth problem

– Critical path item in many applications for processing large volumes of data
– Deteriorating with newer generation hardware architecturesg g

• The main bottleneck is often bandwidth to memory, rather than raw
floating point throughput

• HW advances since 1985 have trended toward extreme floating point
performance (cell phone example) but relatively few improvements in
memory bandwidth performance

• For single core -- condition bandwidth, data reduction size and
computational complexity impact memory bandwidthcomputational complexity impact memory bandwidth

• Today’s HW offerings use designs with multi-socket, multi-core systems
that exhibit performance bottlenecks at several levels and bandwidth
and latency are not sufficient to characterize memory performanceand latency are not sufficient to characterize memory performance

• Use results to develop new tools for tuning domain science codes to HW
(for example physics quantum chromodynamics codes)

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 309/16/2010

Performance Measurement for QCD Physics
Code on Multi-Socket Multi-Core system *Code on Multi-Socket Multi-Core system

* Mandal, Lim, Porterfield, Fowler, “Effects of Multi-core Memory
Concurrency Limits on Multi threaded Applications “

Copyright 2010 © Renaissance Computing Institute All rights reserved

9/16/2010 Patrick Dreher, Chief Scientist 31

Concurrency Limits on Multi-threaded Applications

Comments and Observations (cont’d)

• Recent experimental measurements at RENCI* indicate the key
observation is that the offered concurrency among memory operations
and the ability of the system to handle that concurrency are theand the ability of the system to handle that concurrency are the
fundamental determinants of performance

• For multi-socket- multi-core the fundamental quantity for modeling
should be concurrency rather than latency and bandwidths ou d be co cu e cy at e t a ate cy a d ba d dt

• Designs for HPEC with large volumes of data need to analyze where the
data should be computed, with what HW architecture will it be done, and
what are the concurrency parameter measurements for that systemy p y

* A. Mandal, R. Fowler and A. Porterfield

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 329/16/2010

Discussion and Questions

Copyright 2010 © Renaissance Computing Institute All rights reserved

Patrick Dreher, Chief Scientist 339/16/2010

