

Session 3: Cloud Computing

Albert Reuther/ MIT Lincoln Laboratory

HPEC Conference

16 September 2010

MIT Lincoln Laboratory

Data Intensive Computing

- Compute architecture for large scale data analysis
 - Billions of records/day, trillions of stored records, petabytes of storage
 - $\circ~$ Google File System 2003
 - Google MapReduce 2004
 - Google BigTable 2006

Design Parameters

- Performance and scale
- Optimized for ingest, query and analysis
- Co-mingled data
- Relaxed data model
- Simplified programming
- Community: YAHOO!

Utility Computing

- Compute services for outsourcing IT
 - Concurrent, independent users operating across millions of records and terabytes of data
 - IT as a Service
 - Infrastructure as a Service (laaS)
 - Platform as a Service (PaaS)
 - Software as a Service (SaaS)

Design Parameters

- Isolation of user data and computation
- Portability of data with applications
- Hosting traditional applications
- Lower cost of ownership
- Capacity on demand
- Community: Google salesforce.com amazon webservices & Windows Azure irricity

MIT Lincoln Laboratory

Cloud Computing Concepts

Data Intensive Computing

- Compute architecture for large scale data analysis
 - Billions of records/day, trillions of stored records, petabytes of storage
 - $\circ~$ Google File System 2003
 - Google MapReduce 2004
 - Google BigTable 2006

Design Parameters

- Performance and scale
- Optimized for ingest, query and analysis

facebook.

- Co-mingled data
- Relaxed data model
- Simplified programming
- Community: YAHOO!

Goog

cloudera

Utility Computing

- Compute services for outsourcing IT
 - Concurrent, independent users operating across millions of records and terabytes of data
 - IT as a Service
 - Infrastructure as a Service (laaS)
 - Platform as a Service (PaaS)
 - Software as a Service (SaaS)

Design Parameters

- Isolation of user data and computation
- Portability of data with applications
- Hosting traditional applications
- Lower cost of ownership
- Capacity on demand
- Community: Google salesforce.com amazon & Windows Azure aloudine webservices & Windows Azure

MIT Lincoln Laboratory

Indows Live

- Invited: Accelerating Data Intensive Applications with Flash
 - Allan Snavely / San Diego Supercomputing Center
- Invited: Cloud Computing for Processing Large Volumes of Data
 - Patrick Dreher / Renaissance Computing Institute
- Break
- Persistent Surveillance Supercomputing in a Can
 - Jeremy Kepner, William Arcand, Chansup Byun, Bill Bergeron, Matthew Hubbell, Andrew McCabe, Peter Michaleas, Julie Mullen and Albert Reuther / MIT Lincoln Laboratory
- Building a Scalable Knowledge Space on the Cloud: Initial Integration and Evaluation
 - Delsey Sherrill, Jonathan Kurz and Craig McNally / MIT Lincoln Laboratory

Poster / Demo B: Cloud Technologies and Applications

Albert Reuther / MIT Lincoln Laboraroty

HPEC Conference

15 September 2010

MIT Lincoln Laboratory

Cloud Technologies and Applications

- 1 Performance Characterization of the Tile Processor Architecture: Lessons Learned
 - Eric Grobelny, Jim Passwater and Andrew White / Honeywell
- 2 The MIST, a local, secure cloud context and 802.11s testbed
 - Gregory Dempsey, Ronald Feher and Lindsay Gordon / USMA Kurt Keville / MIT
- 3 Development of a Real-Time Parallel UHF SAR Image Processor
 - Matthew Alexander, Michael Vai, Thomas Emberley, Stephen Mooney and Joseph Rizzari / MIT Lincoln Laboratory
- 4 Automated Software Cache Management
 - William Lundgren, Kerry Barnes and James Steed / Gedae, Inc.
- 5 Dependable Multiprocessor (DM) Implementation for Nano-satellite and CubeSat Applications
 - Matthew Clark, John Samson, Jr., / Honeywell
- 6 Combining Scripting Environments and Sourcery VSIPL++ for Rapid Prototyping
 - Stefan Seefeld, Brooks Moses, Don McCoy and Justin Voo / CodeSourcery, Inc.

- 7 Multicore, Multithreaded, and/or Multi-GPU-Kernel VSIPL Standardization, Implementation, and Programming Impacts: Syntax, Semantics, Models
 - Anthony Skjellum / RunTime Computing Solutions, LLC
- 8 Mnemosyne: A Tool for Temporal Memory Access Analysis in HPC Applications
 - Shahrukh Tarapore and Matthew Burkholder / Lockheed Martin
- 9 Development of a Component-Based Framework using VSIPL++
 - Alan Ward, Roger Winstanley and Mark Hayman / Northrop Grumman
- 10 Deploying an ISR Cloud Platform
 - Geert Wenes and Dan Poznanovic / Cray, Inc.
- 11 Improving FFTW Benchmark to Measure Multi-core Processor Performance
 - William Pilaud / Curtiss Wright Controls Embedded Computing