
Improving FFTW Benchmark to Measure Multi-core Processor

Performance
William J. Pilaud

Curtiss Wright Controls Embedded Computing

bpilaud@curtisswright.com

The challenge for the embedded industry is to find an impartial method of comparison between different processor

technologies, architectures, and system topologies for COTS based digital signal processing (DSP) boards. Often, most

benchmark systems specialize in one type of use case that might simulate real applications but may lead to invalid

conclusions or opinions for system selection. Increasingly, the embedded industry is investigating multi-core processors

as a platform for DSP. DSP performance is a difficult thing to benchmark as processor companies change processor

technology from single to two or more cores, cache architectures, memory connection strategies and chip-to-chip

interconnects. This paper will describe the investigation of an Intel processor and propose a modest addition to Fastest

Fourier Transform in the West (FFTW) benchmark to highlight these architecture changes.

1. Introduction
 Matteo Frigo and Steven G. Johnson of MIT created

and released FFTW on March 24, 1997, which provided a

unique digital signal processing benchmark for a

remarkable number of general-purpose processors.

FFTW is a math library used to compute Discrete Fourier

Transforms (DFTs)1. The FFTW library continues to

evolve as processor, network and software technology

change by adding new features, compliers, operating

systems support, and library features. FFTW has

benchmark software called benchFFT. This benchmark

shows speed results of many processors. However, all of

these benchmarks results are the performance of a single

core or thread and do not show the true capability of

multi-core processors. Today, most general-purpose

processor companies offer multi-core processors,

therefore a change of the benchFFT that would show the

performance improvement of these architectures that

would be beneficial to DSP integrators.

2. Understanding benchFFT

3.
FFTW’s benchFFT calculates mflops as

������ �
 5
 �
 ������

����� ��� ��� ��� �� ���

By examining this calculation, as FFT size increases

then given some fixed amount of time, processing time

(FLOPS) would have to increase. Therefore, the more

FLOPs the lower the latency time if processing time is

significant to system design. DSP integrators can use this

benchFFT FLOP time to estimate processor need for their

applications and estimate latency. However, depending

on processor architecture, memory connect and even

processor to processor interconnect this latency is very

hard to predict. Figure 1 shows a single precision

complex power of two out-of-place benchFFT for the

FFTW3 algorithm for a 2.4 GigaHertz Intel Pentium 4.2.

Figure 1: benchFFT for 2.4G P4 using FFTW3

This bell shaped curve for single precision complex

even numbered FFTs is typical for all processors on the

FFTW benchmark website. As the size of the FFT

increases to a certain size, the FFT latency gets smaller or

FLOPs increase. At some FFT size, the hardware,

algorithm, and data size reach an optimum and then

quickly, as the FFT increases further in size the

performance drops because the processor has to wait for

data to move from slower memory sub-systems to

processor memory (cache). Therefore, with very large

FFT sizes the latency is directly proportional to non-cache

memory speed.

Some people have speculated that the reason for high

latency on the smaller FFT is due to the overhead of

library function calls or some sort operating system

overhead, but this is not true.

The reason why FFTW shows lower than theoretical

maximum is that the FFTW algorithm is not just doing

floating-point operations. Depending on FFT size, FFTW

is spending most of the processing time, moving data

from one variable to another. On a 2-point FFT, 98.4% of

the processing time is used for data movement and other

operating system overhead with less than 2% doing

floating point math. At optimal sizes between 256 and

2048 points, the processor peaks to nearly 40% of

theoretical maximum floating point capability. Also, for

the smaller FFT sizes the FFTW designers elected to use

loops. If the FFTW designers had unrolled the loops then

the FFT would improve from 2% to 10% floating point

utilization for some of the smaller FFT sizes. However,

this “un-rolling the loops method” for calculating FFTs is

very prohibitive when the FFT size becomes larger

because the FFT code would grow exponentially with this

method and would quickly perform worse than loop based

0

1000

2000

3000

4000

5000

6000

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

M
F

L
O

P
S

FFT Size

algorithms. FFTW does not really benchmark the

processors actual floating point performance; it really

shows the optimal floating point problem size to

processor system data movement capability.

4. Multi-core support to benchFFT
Benchmarking the performance of a Multi-core

processor is not the same as multiplying the results of one

core by the number of cores on the processor. Multi-core

processors typically have architectures that share cache

and external memory, that will affect benchmark

performance. For example, two separate 1 GHz

processors could run some large FFT algorithms faster

than a 1 GHz dual-core processor. To complicate matters,

general-purpose processors manufacturers are always

adding math acceleration instructions to the processor

core. The chip designers have added mathematical

functions, widened inner processor pipelines, increased

math register size or added specialized cache structures to

improve math calculation speed. Simply multiplying the

single core benchFFT results by the number of cores will

not result in the true performance of the multi-core

processor. The only way to find out how fast a processor

can run FFTs is to benchmark all of the cores in the

processor simultaneously.

Change the benchmark routine by running multiple

instances of the same benchmark with processor affinity,

the resulting processor performance is a different from the

predicted performance. The taskset command In LINUX

controls processor affinity. For example, here is a snippet

of the benchmark script used in benchFFT.

if test "$speed" = yes; then
 time="`$program $useropt --report-benchmark

--time-min $time_min –speed $problem | tail -1`" || wait

This script generates fftw3 results like:
fftw3 scof 2 302.86 3.3018589e-08 0.002147

fftw3 scof 4 834.58 4.7928065e-08 0.002011

By modifying the benchmark script to add the command

taskset, each core will now run the benchmark

independently and dump the results simultaneously (the

example here is a 4 core processor).

taskset-c 3 $program $useropt –report-benchmark --time-min $time_min
--speed $problem > a1.out &
taskset -c 2 $program $useropt --report-benchmark --time-min $time_min
--speed $problem > a2.out &
taskset -c 1 $program $useropt --report-benchmark --time-min $time_min
--speed $problem > a3.out &
taskset -c 0 $program $useropt --report-benchmark --time-min $time_min
--speed $problem > a4.out &

Now that each core is running the benchmark, the results

would look something like this:

fftw3 scof 2 297.62 3.36e-08 0.000422

fftw3 scof 2 296.74 3.37e-08 0.000471

fftw3 scof 2 302.11 3.31e-08 0.000428

fftw3 scof 2 294.99 3.39e-08 0.00047

By running a script or a program that adds the floating-

point figures together and averaging the setup time and

accuracy, the resultant processor performance of a quad

core processor would look like this:

fftw3 scof 2 1191.5 3.3575e-08 0.000448

Comparing the single core benchmark with its FLOPs

results multiplied by four and the actual benchmark

running in all cores in parallel, we can see that the

prediction differs in the actual (see figure 2).

Figure 2: Actual Quad Core FFT performance

Interestingly, except for some of the small calculations

the actual FFT performance of the quad processor does

not actually match predicted performance. In fact, some

FFT sizes the system seems to perform better than

expected. However, as soon as the FFT size and

algorithm size require the processor to use the slower

external memory (non-cache) the processor performance

quickly drops to some factor related to the external

memory bandwidth.

5. Conclusion
Multi-core processors will increase their adoption in

the embedded computer market. Multi-core processor

manufacturers are aggressively optimizing the power to

performance of these processors. In effect, multi-core

chip providers are optimizing size, weight and power for

the signal processor applications.

Therefore, a scalable benchmark applicable to multi-

core DSP performance could be a method of predicting

what and when multi-core DSP boards can perform an

DSP application.

1 “FFTW FAQ-Section 1 Introduction and General Information”,

retrieved from FFTW:

http://www.fftw.org/faq/section1.html#whatisfftw, April 29, 2009.

0

5000

10000

15000

20000

25000

30000

35000

40000

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
…

Actual

2 “2.4 GHz Pentium 4, GNU compilers”,

http://www.fftw.org/speed/Pentium4-2.4GHz-gcc/

