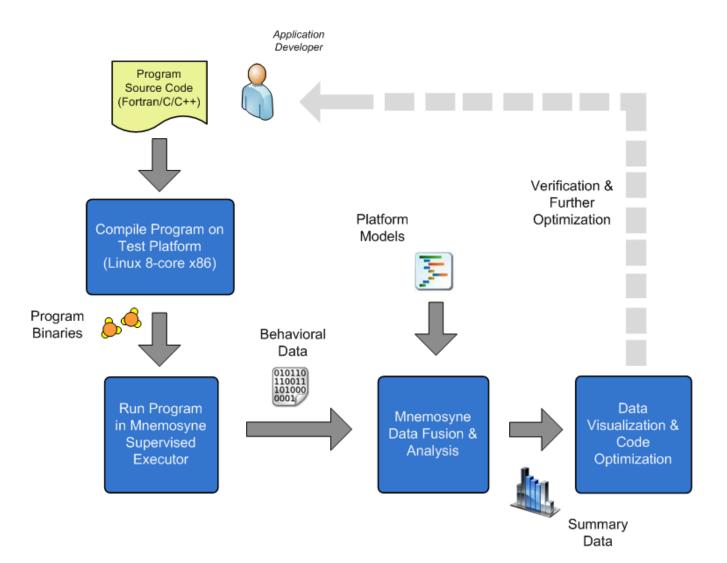
Mnemosyne: Program Analysis Tools for HPC Code Optimization

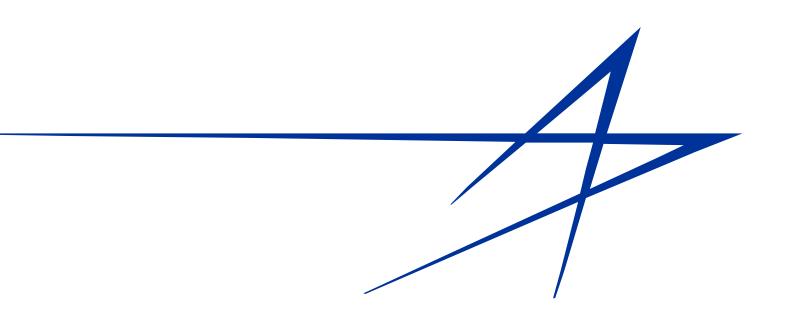
Lockheed Martin Advanced Technology Laboratories (ATL) Cherry Hill, NJ


Shahrukh R. Tarapore Research Scientist

Application Behavior Problem

- HPC codes are written by domain experts not computer systems engineers
- Naïve implementations lead to bottlenecks which are typically platform specific
- HPC hardware architectures will continue to change rapidly
 - a new platform often means repeating the optimization process

Solution: Mnemosyne



Experimental Results

Application	Language	Description	SLOC	Speedup	Behaviors
CIT Airshed	Fortran	Models formation and dispersal of atmospheric pollutants	0.4K	2x	Memory striding Function Invariants
LIBQuantum	С	Quantum mechanics simulation	37K	1.75x	Memory striding
GNU Go	С	Artificial intelligence playing the game 'Go'	571K	1.05x	Memory striding Branch invariants
OpenLB Poiseuille2D	C++	Computational Fluid Dynamics Simulation	55K	1.02x	Memory striding Branch invariants
ICEPIC	С	High power microwave physics modeling	78K	1x	Memory striding Branch invariants Misaligned Accesses

• All applications are compiled with dwarf-2 debugging symbols and level 0 optimization.

