
Mnemosyne: A Tool for Temporal Memory Access Analysis
in HPC Applications

Shahrukh R. Tarapore and Matthew Burkholder
Lockheed Martin Advanced Technology Laboratories

{shahrukh.r.tarapore, matthew.burkholder}@lmco.com

Introduction
An increasingly common cause of performance degradation
in HPC applications is the ineffective access of data as
memory technology performance lags behind its processor
counterparts [1]. Even today, access to off-chip memories is
significantly slower than access to on-chip registers and
caches (e.g., register reference 0.25ns, cache 1.0ns, and
main memory 100ns). These observed slowdowns are
predominantly due to the drastically varying frequencies at
which DRAM chips run compared to on-chip storage. In
addition, address translation, multiplexing, memory
controller overheads, bus arbitration and speed, and DRAM
refresh rates have increasing influence on access times.

Phenomena such as data striding, misaligned cache access
and false sharing use to be small anomalies with a
negligible effect on application performance. However, as
the gap has grown and continues to grow between CPU and
DRAM performance, these phenomena pose a measurable
and significant source of performance degradation.

Mnemosyne Overview
Mnemosyne is a dynamic program analysis tool that is able
to collect information about memory access over time,
which can be used to directly assist HPC code optimization
efforts.

Mnemosyne uses binary instrumentation to collect detailed
(bit-level) information about memory accesses during the
execution of the program. The tool leverages a novel
combination of dynamic binary rewriting and detailed
symbolic information to facilitate measurement of any x86-
based (e.g., Intel Pentium/Xeon, AMD Athlon/Opteron)
compiled binaries. The tool performs real-time
“distillation” of the data to avoid unmanageable data bloat.
Once analysis is completed, the results are linked to
respective lines of source code to aid in maintenance and
optimization during the software development cycle
(Figure 1).

For a given input executable, the output of the supervised
execution tool is a set of temporal control and memory
events that can be used to identify performance degrading
issues in HPC codes.
To usefully interpret the collected data, Mnemosyne
requires a model of the underlying hardware cache
architecture. This model defines attributes of the cache,
such as cache size, associativity level, and cache line size,
and can be extended as new analyzers are built requiring
more knowledge of the hardware architecture.

Figure 1. Mnemosyne Tool Components

Mnemosyne Analyzers
Memory Stride Analysis

Striding is the amount of data or interval between
successive reads and/or writes. The memory stride analysis
monitors the patterns in which an application traverses its
memory space. We are interested in detecting two forms of
striding. First, we find erratic striding which negates the
spatial locality and increases cache misses due to cache line
conflicts. Second, we detect regular and predictable striding
patterns that force unexpected capacity and conflict misses
[2].

Mnemosyne’s memory stride analysis detects striding
patterns in an application as it traverses the memory space.
As patterns appear and are recorded, their predictability is
measured. The prototype analysis currently rates the
predictability of an individual pattern against all other
detected patterns. The respective code segments that exhibit
the striding patterns can then later be evaluated for erratic
access patterns and unnecessary cache misses.

Cache Misaligned Access Analysis

The cache misaligned access analysis searches for
addresses of memory requests that cause two cache lines to
be accessed, thus stalling the pipeline for longer than
expected by instruction schedulers. Our analysis mimics
modern cache architectures by comparing address tags. If
the address boundaries of the request have two different
tags, the request is misaligned and reported to the
developer.

Cache False Sharing Analysis

The cache false sharing analysis determines whether two or
more threads of a multi-threaded application requesting two
distinct data elements on the same cache line are thrashing
the cache as they move data from one processor to another.
This behavior, if left unchecked, can lead to performance
degradation as the coherency protocol and data transfer
between caches dominates execution time.

To mimic the concurrent behavior of threads, we model the
expected behavior of threads with a sliding window of
memory accesses. If two memory requests fall on the same
cache line (but not the same address) within the predefined
window, the requesting thread is considered to be
competing with another thread for that cache line. If this
behavior is seen in multiple requests, the behavior is
reported along with the subset of threads involved in the
false sharing. There are limitations to our scheme. The
sliding window, if specified too large, could incur many
false positives, and if the window is configured too small,
could incur false negatives.

Invariant Analysis

The invariant analysis finds invariant branches and function
calls that are unnecessary to preserve program semantics.
Control flow constructs such as branches pose a difficult
challenge to compilers trying to schedule instructions to
execute. Additionally, execution time can be dominated by
loops, so it is vital to keep loops as small and efficient as
possible.

Our analyzer keeps a running history of frequently executed
invariant variables in the code. The user can specify a
requisite invariance tolerance level (typically near 100%).
As the code is executed, a running history is updated
depending on how the potential invariant is resolved in that
instance. Variables below the user defined threshold are
thrown out. These variables are too erratic and exhibit no
invariance in the program semantics. Variables that stay in
the history and have invariance levels above the threshold
are reported as potential invariants or as sufficiently
consistent variables. The invariant variables can be safely
eliminated from the application code and those that are
sufficiently consistent can be reexamined and reorganized
to make them invariant if possible.

Tool Evaluation and Results
We used open source, SPEC [3], and customer codes to
evaluate Mnemosyne. Our results are shown in Table 1.
The codes were hand-optimized based on the Mnemosyne
analysis, and the applications were rerun to verify
functional correctness and to compare total execution time.

Code Speedup Behaviors

LibQuantum 2x Memory striding
Function Invariants

GNU Go 1.05x Memory striding
Branch invariants

OpenLB
Poiseuille2D

1.02x Memory striding
Branch invariants

ICEPIC 1x Memory striding
Branch invariants
Misaligned Accesses

Table 1. Evaluation Results

While we do expect Mnemosyne to find many common
bottlenecks in HPC codes, it would be unrealistic to
compare an automated tool to human developers seeking
out and fixing those same bottlenecks. The fact that
Mnemosyne was able to find deficiencies even after
decades of human optimization efforts speaks to the extent
of its usefulness. In our future work, Mnemosyne will be
evaluating new applications as they are being developed.
Our goal is to assist developers in quickly and easily
detecting inefficient anomalies in their code and provide
them exact source code lines to inspect for further
optimization, reducing long optimization efforts.

References
[1] John Hennessy and David Patterson. Computer Architecture -

A Quantitative Approach. Morgan Kaufmann, 2003.

[2] M.D. Hill and A.J. Smith, “Evaluating Associativity in CPU
Caches”, IEEE Transactions on Computers, vol. 38, issue 12,
Dec. 1989, pp. 1623-1630.

[3] http://www.spec.org/cpu2006/

