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Introduction 
An increasingly common cause of performance degradation 
in HPC applications is the ineffective access of data as 
memory technology performance lags behind its processor 
counterparts [1]. Even today, access to off-chip memories is 
significantly slower than access to on-chip registers and 
caches (e.g., register reference 0.25ns, cache 1.0ns, and 
main memory 100ns). These observed slowdowns are 
predominantly due to the drastically varying frequencies at 
which DRAM chips run compared to on-chip storage. In 
addition, address translation, multiplexing, memory 
controller overheads, bus arbitration and speed, and DRAM 
refresh rates have increasing influence on access times.  

Phenomena such as data striding, misaligned cache access 
and false sharing use to be small anomalies with a 
negligible effect on application performance. However, as 
the gap has grown and continues to grow between CPU and 
DRAM performance, these phenomena pose a measurable 
and significant source of performance degradation. 

Mnemosyne Overview 
Mnemosyne is a dynamic program analysis tool that is able 
to collect information about memory access over time, 
which can be used to directly assist HPC code optimization 
efforts.  

Mnemosyne uses binary instrumentation to collect detailed 
(bit-level) information about memory accesses during the 
execution of the program. The tool leverages a novel 
combination of dynamic binary rewriting and detailed 
symbolic information to facilitate measurement of any x86-
based (e.g., Intel Pentium/Xeon, AMD Athlon/Opteron) 
compiled binaries. The tool performs real-time 
“distillation” of the data to avoid unmanageable data bloat. 
Once analysis is completed, the results are linked to 
respective lines of source code to aid in maintenance and 
optimization during the software development cycle  
(Figure 1). 

For a given input executable, the output of the supervised 
execution tool is a set of temporal control and memory 
events that can be used to identify performance degrading 
issues in HPC codes. 
To usefully interpret the collected data, Mnemosyne 
requires a model of the underlying hardware cache 
architecture. This model defines attributes of the cache, 
such as cache size, associativity level, and cache line size, 
and can be extended as new analyzers are built requiring 
more knowledge of the hardware architecture.   

 

 
Figure 1. Mnemosyne Tool Components 

Mnemosyne Analyzers 
Memory Stride Analysis 

Striding is the amount of data or interval between 
successive reads and/or writes. The memory stride analysis 
monitors the patterns in which an application traverses its 
memory space. We are interested in detecting two forms of 
striding. First, we find erratic striding which negates the 
spatial locality and increases cache misses due to cache line 
conflicts. Second, we detect regular and predictable striding 
patterns that force unexpected capacity and conflict misses 
[2]. 

Mnemosyne’s memory stride analysis detects striding 
patterns in an application as it traverses the memory space.  
As patterns appear and are recorded, their predictability is 
measured. The prototype analysis currently rates the 
predictability of an individual pattern against all other 
detected patterns. The respective code segments that exhibit 
the striding patterns can then later be evaluated for erratic 
access patterns and unnecessary cache misses. 

Cache Misaligned Access Analysis 

The cache misaligned access analysis searches for 
addresses of memory requests that cause two cache lines to 
be accessed, thus stalling the pipeline for longer than 
expected by instruction schedulers. Our analysis mimics 
modern cache architectures by comparing address tags. If 
the address boundaries of the request have two different 
tags, the request is misaligned and reported to the 
developer. 

 



Cache False Sharing Analysis 

The cache false sharing analysis determines whether two or 
more threads of a multi-threaded application requesting two 
distinct data elements on the same cache line are thrashing 
the cache as they move data from one processor to another.  
This behavior, if left unchecked, can lead to performance 
degradation as the coherency protocol and data transfer 
between caches dominates execution time. 

To mimic the concurrent behavior of threads, we model the 
expected behavior of threads with a sliding window of 
memory accesses. If two memory requests fall on the same 
cache line (but not the same address) within the predefined 
window, the requesting thread is considered to be 
competing with another thread for that cache line. If this 
behavior is seen in multiple requests, the behavior is 
reported along with the subset of threads involved in the 
false sharing. There are limitations to our scheme. The 
sliding window, if specified too large, could incur many 
false positives, and if the window is configured too small, 
could incur false negatives.  

Invariant Analysis 

The invariant analysis finds invariant branches and function 
calls that are unnecessary to preserve program semantics.  
Control flow constructs such as branches pose a difficult 
challenge to compilers trying to schedule instructions to 
execute. Additionally, execution time can be dominated by 
loops, so it is vital to keep loops as small and efficient as 
possible.  

Our analyzer keeps a running history of frequently executed 
invariant variables in the code. The user can specify a 
requisite invariance tolerance level (typically near 100%).  
As the code is executed, a running history is updated 
depending on how the potential invariant is resolved in that 
instance. Variables below the user defined threshold are 
thrown out. These variables are too erratic and exhibit no 
invariance in the program semantics. Variables that stay in 
the history and have invariance levels above the threshold 
are reported as potential invariants or as sufficiently 
consistent variables. The invariant variables can be safely 
eliminated from the application code and those that are 
sufficiently consistent can be reexamined and reorganized 
to make them invariant if possible.  

Tool Evaluation and Results 
We used open source, SPEC [3], and customer codes to 
evaluate Mnemosyne. Our results are shown in Table 1. 
The codes were hand-optimized based on the Mnemosyne 
analysis, and the applications were rerun to verify 
functional correctness and to compare total execution time.  

Code Speedup Behaviors 

LibQuantum  2x  Memory striding  
Function Invariants 

GNU Go  1.05x  Memory striding 
Branch invariants  

OpenLB 
Poiseuille2D  

1.02x  Memory striding 
Branch invariants  

ICEPIC  1x  Memory striding 
Branch invariants 
Misaligned Accesses 

Table 1. Evaluation Results 

While we do expect Mnemosyne to find many common 
bottlenecks in HPC codes, it would be unrealistic to 
compare an automated tool to human developers seeking 
out and fixing those same bottlenecks.  The fact that 
Mnemosyne was able to find deficiencies even after 
decades of human optimization efforts speaks to the extent 
of its usefulness. In our future work, Mnemosyne will be 
evaluating new applications as they are being developed. 
Our goal is to assist developers in quickly and easily 
detecting inefficient anomalies in their code and provide 
them exact source code lines to inspect for further 
optimization, reducing long optimization efforts. 
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