
Multicore, Multithreaded, Multi-GPU Kernel
VSIPL Standardization, Implementation, &VSIPL Standardization, Implementation, &

Programming Impacts

A th Skj ll Ph DAnthony Skjellum, Ph.D.

http://www.runtimecomputing.com

Fine Grain ConcurrencyFine-Grain Concurrency
Widespread in HPEC platforms

SMP () SMP (not new)
 Multicore (e.g., Core i7, 8641D)
 Hyperthreading and other weaker internal core Hyperthreading and other weaker internal core

concurrency
 SMP VxWorks (tasks vs. POSIX

processes use case new issue not new)processes… use case new, issue not new)
 Customers are demanding standards-

based approaches to programming VSIPL pp p g g
in multicore environments

 Thread-safe VSIPL increasingly in demand

Thread Safe User-Level
 Portability must be maintained

U d t t l/hi t f Users may need to control/hint use of
concurrency internally in a library vs.
their own task concurrencytheir own task concurrency
 Affinity issues and choices arise

Si l th d d d ’t t t Single-threaded users don’t want to
pay for overhead of multithreaded
modelsmodels
 VSIPL APIs are a good start

Model VSIPL Model MT1Model VSIPL Model MT1
 Rules
 Every thread that uses VSIPL calls vsip init() and Every thread that uses VSIPL calls vsip_init() and

vsip_finalize()
 Every thread works with independent objects and

memorymemory
 All existing VSIPL syntax is valid
 No new VSIPL syntax is needed or provided

Pth d (POSIX) th di lib Pthreads (POSIX) as threading library
 High quality implementations allow internal

concurrent execution of user threadsconcurrent execution of user threads
 Low overhead

What’s in the posterWhat s in the poster
 Why Thread-safe VSIPL important

A ti l ltith d d i A practical multithreaded programming
model for VSIPL defined (MT1)

 An example of MT1-based FFT example An example of MT1-based FFT example
 Explanations of issues, concerns, and

barriers going to multithreadedg g
 Discussion of GPU-related (offload-

engine) related issues

