
Multicore, Multithreaded, Multi-GPU Kernel
VSIPL Standardization, Implementation, &VSIPL Standardization, Implementation, &

Programming Impacts

A th Skj ll Ph DAnthony Skjellum, Ph.D.

http://www.runtimecomputing.com

Fine Grain ConcurrencyFine-Grain Concurrency
Widespread in HPEC platforms

SMP () SMP (not new)
 Multicore (e.g., Core i7, 8641D)
 Hyperthreading and other weaker internal core Hyperthreading and other weaker internal core

concurrency
 SMP VxWorks (tasks vs. POSIX

processes use case new issue not new)processes… use case new, issue not new)
 Customers are demanding standards-

based approaches to programming VSIPL pp p g g
in multicore environments

 Thread-safe VSIPL increasingly in demand

Thread Safe User-Level
 Portability must be maintained

U d t t l/hi t f Users may need to control/hint use of
concurrency internally in a library vs.
their own task concurrencytheir own task concurrency
 Affinity issues and choices arise

Si l th d d d ’t t t Single-threaded users don’t want to
pay for overhead of multithreaded
modelsmodels
 VSIPL APIs are a good start

Model VSIPL Model MT1Model VSIPL Model MT1
 Rules
 Every thread that uses VSIPL calls vsip init() and Every thread that uses VSIPL calls vsip_init() and

vsip_finalize()
 Every thread works with independent objects and

memorymemory
 All existing VSIPL syntax is valid
 No new VSIPL syntax is needed or provided

Pth d (POSIX) th di lib Pthreads (POSIX) as threading library
 High quality implementations allow internal

concurrent execution of user threadsconcurrent execution of user threads
 Low overhead

What’s in the posterWhat s in the poster
 Why Thread-safe VSIPL important

A ti l ltith d d i A practical multithreaded programming
model for VSIPL defined (MT1)

 An example of MT1-based FFT example An example of MT1-based FFT example
 Explanations of issues, concerns, and

barriers going to multithreadedg g
 Discussion of GPU-related (offload-

engine) related issues

