// COMPUTING SOLUTIONS

Multicore, Multithreaded, Multi-GPU Kernel
VSIPL Standardization, |mplementation, &
Programming Impacts

Anthony Skjellum, Ph.D.

http://www.runtimecomputing.com

Fine-Grain Concurrency

Widespread in HPEC platforms

= SMP (not new)
= Multicore (e.g., Corei7, 8641D)

= I—I\lnarfhrogrllnn nnnl nfhor \AIQQ'/DP‘ |n'|'arngl core
1y it iy aiil U ai LU

concurrency

= SMP VxWorks (tasks vs. POSIX
processes... Use case new, issue not new)

= Customers are demanding standards-
based approaches to programming VSIPL
In multicore environments

Thread-safe VSIPL increasingly in demand

Thread Safe User-Level

Portability must be maintained

Users may need to control/hint use of
concurrency internally in a library vs.
their own task concurrency

Affinity iIssues and choices arise
Single-threaded users don’t want to

pay for overhead of multithreaded
models

VSIPL APIs are a good start

Model VSIPL Model MT1

= Rules

= Every thread that uses VSIPL calls vsip_init() and
vsip_finalize()

= Every thread works with independent objects and

memory
= All existing VSIPL syntax is valid
= No new VSIPL syntax is needed or provided

= Pthreads (POSIX) as threading library

= High quality implementations allow internal
concurrent execution of user threads

= Low overhead

What's In the poster

Why Thread-safe VSIPL important

A practical multithreaded programming
model for VSIPL defined (MT1)

An example of MT1-based FFT example

Explanations of issues, concerns, and
barriers going to multithreaded

Discussion of GPU-related (offload-
engine) related issues

- .

% o
%RunTime

,/, COMPUTING SOLUTIONS

J/ COMPUTING SOLUTIONS

