
Multicore, Multithreaded, and/or Multi-GPU-Kernel VSIPL Standardiization,
Implementation, and Programming Impacts: Syntax, Semantics, Models

Anthony Skjellum, PhD

RunTime Computing Solutions, LLC
1500 1st Avenue North, Suite C112/U19, Birmingham, AL 35203, USA

tony@runtimecomputing.com

Overview
There is immediate need to define, refine, support, and
standardize performance-portable VSIPL/VSIPL++
profiles with potential additional API and well-
defined augmented semantics (behaviors and rules)
because of the rapid adoption of fine-grain SMP and
multicore processors and/or multi-simultaneous-kernel
GPUs, some or all of which can now comprise a
computational hierarchy in which VSIPL/VSIPL++
must execute. VSIPL providers needed such
standards to successfully support their customers.
Pragmatically, this paper begins by describing
threaded user-level programming models for VSIPL
that need to be standardized now and are already
needed/requested by existing VSIPL users on existing
and near-term systems (e.g., VxWorks or Linux for
PPC 8641D, Intel Core i7, and soon, e500-based
massively multicore processors as well), including the
basic use cases requested by actual defense-program
adopters of these standards. The concepts described
here apply both to VSIPL and VSIPL++ formulations,
and are largely orthogonal to considerations of
distributed memory parallelism already considered in
the VSIPL++ standard or the concurrent use of VSIPL
and MPI, DRI, or other message-passing language.

Contributions
This paper makes the following contributions:

• This work will inform the key body of VSIPL
and VSIPL++ adopters to the new dimensions
of concurrency and how they both enable and
challenge these standards as well as the user
programs that use VSIPL or VSIPL++ at
present.

• A review of the thread-safe aspects of the
existing VSIPL standard is provided, with
comparisons offered as needed to VSIPL++,
so that both are covered by the concepts
presented.

• Definition of a handful of minimal(istic)
thread-safe programming models is made,
ones that emphasize optimistic locking, and
demonstrations of performance impact on
e600 and Core i7 platforms. This mode of
operation does not introduce the need for new
APIs into the standards. These basic models

and their logical extensions inform of a new
taxonomy of VSIPL/VSIPL++ programming
models.

• A discussion of minimal concurrency
management within VSIPL/VSIPL++
implementations, and OS/runtime
implications of the duties of the library, vs.
the underlying OS (e.g., Linux vs. VxWorks).

• Discussion of thread affinity implications are
also covered in terms of user program goals,
operating system behavior, and realistic
limits/potential for continued program
portability.

• Definition of potential high performance
extensions to the minimal models that rely
strictly on optimistic locking, and how to
reduce pessimistic locking; mentioning the
kinds of locking appropriate to different
situations is also covered (e.g., short vs. long-
term locking);

• Discussions of what more generalized
programming models would be that involve
several degrees of inter-thread sharing, and/or
internal library concurrency. For instance,
specific thread-aware code, and thread-
optimized behavior can be supported better by
extending the APIs, and by using the object-
based (resp, object-oriented) natures of
VSIPL and VSIPL++ to designate the kind of
sharing of specific objects. For instance,
some objects may not be shared or be single
executed, and they need not be subject to
pessimistic locking; others may need to be
shared in ways that force the library itself to
lock.

• Implications of multithreaded programs
running on systems with memory hierarchy,
heterogeneity, and segmentation are
mentioned as well. In particular, implications
of the admit-release paradigm in the face of
multi-level concurrency in the user program
and the implementations, as well as
heterogeneous memory are discussed.

• Further implications on VSIPL/VSIPL++
programming when multi-kernel GPU
scheduling occurs in tandem with multicore

processors running single- or multi-threaded
VSIPL, as is now possible with CUDA+Fermi
GPUs from NVIDIA. We offer specific
possible solutions for how to manage such
cases, and indicate remaining open issues.

• Performance overheads between single-
threaded and multi-threaded libraries will be
demonstrated with the VSI/Pro(R) family of
VSIPL implementations. We find that these
can be quite low, particularly if the underlying
operating system already provided thread-safe
memory management, but less so on systems
where inter-task (inter-process) locking is
relatively expensive. Compiler issues will be
touched on briefly.

• A review of the implications in the
performance-portability-productivity space of
these new hardware architectures and
programming models, and specifically to
emerging “threats” to portability at acceptably
high performance.

• Extra implications because of C++ in the
APIs, in the user programs, and in the
implications are discussed briefly.

• Finally, a call to action for prompt and on-
going standardization is made.

Relevance to the HPEC Audience
Current defense-oriented programs (meaning the
organizations adopting the standard and the software
artifacts alike) of the VSIPL standards have access to
multicore processors routinely at this time: Intel Core
i7, Atom, and Freescale 8641D processors, in
particular, with others to follow. This militates that a
clear resolution on how to use VSIPL in performance-
portable modes without undue overheads be defined
and agreed on by the community. Furthermore, it
suggests that high performance implementations will
need to offer “production multithreaded” and
“production single threaded” libraries as well as
runtime switches or added API, in order to avoid
accidental overheads for programs that continue to use
single threaded programs. In addition, it should be
noted that VxWorks SMP mode, which presents its
task-oriented execution model, inherently requires
thread-safe VSIPL implementations even when
independent user programs are running. The on-
going adoption of this operating system is another
reason why this paper is extremely timely and crucial
to the continued viability of VSIPL and VSIPL++.

The impact of high performance, flexible, and
“profile”-oriented solutions to the concomitant
opportunities and challenges of fine-grain concurrency
will ensure that the VSIPL and VSIPL++ standards

continue to be broadly usable in the context of fine-
grain parallelism in multicore and SMP systems both
in embedded and cluster/cloud environments.
Conversely, lack of immediate attention to these
concerns will clearly limit the usability of these
standards moving forward, or will limit portability as
different implementers provide alternative strategies
for multithreaded and/or multikernel environments.
This paper's presentation will ideally raise awareness
to the importance of defense program deciders about
the need for careful consideration on how to adopt
fine grain concurrent systems and how to use VSIPL
and VSIPL++ effectively in such systems, including
adapting legacy applications for such systems (e.g.,
refreshes, code reuse on new defense programs) in
ways that exploit the fine-grain concurrency
effectively, quickly, correctly, and robustly.

References

1. VSIPL Standards, URL: www.vsipl.org ;
accessed May 19, 2010.

2. “Using Concurrency, Chapter 3”,
http://gcc.gnu.org/onlinedocs/libstdc+
+/manual/using_concurrency.html, accessed
May, 19, 2010.

3. Intel Core i7 Processor:
http://www.intel.com/products/processor/core
i7/index.htm , accessed May 19, 2010.

4. e600 series SMP Freescale Processors:
http://www.freescale.com/webapp/sps/site/ov
erview.jsp?code=DRPPCDUALCORE ,
accessed May 19, 2010

5. e500 series SMP Freescale Processor:
http://www.freescale.com/webapp/sps/site/ov
erview.jsp?
nodeId=0162468rH3bTdG25E4&tid=SAC&g
clid=CLq6xrXs36ECFdtB5godh2wVKA ,
accessed May 19, 2010.

6. Cain, Kenneth, and Sroka, Brian,
“Experiences in Porting an Existing
Application to the VSIP API,” MITRE
Corporation, July 22, 1997, presented at the
VSIP Meeting, URL:
http://www.vsipl.org/VSIP_Exp.pdf ,
accessed May 19, 2010.

7. Exascale Software Study, Kogge et al, URL:
http://users.ece.gatech.edu/mrichard/Exascale
ComputingStudyReports/ECSS%20report
%20101909.pdf , accessed May 19, 2010.

http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://www.vsipl.org/VSIP_Exp.pdf
http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=0162468rH3bTdG25E4&tid=SAC&gclid=CLq6xrXs36ECFdtB5godh2wVKA
http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=0162468rH3bTdG25E4&tid=SAC&gclid=CLq6xrXs36ECFdtB5godh2wVKA
http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=0162468rH3bTdG25E4&tid=SAC&gclid=CLq6xrXs36ECFdtB5godh2wVKA
http://www.freescale.com/webapp/sps/site/overview.jsp?code=DRPPCDUALCORE
http://www.freescale.com/webapp/sps/site/overview.jsp?code=DRPPCDUALCORE
http://www.intel.com/products/processor/corei7/index.htm
http://www.intel.com/products/processor/corei7/index.htm
http://gcc.gnu.org/onlinedocs/libstdc++/manual/using_concurrency.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/using_concurrency.html
http://www.vsipl.org/

