

Automated Software Cache Management
William Lundgren (wlundgren@gedae.com), Kerry Barnes (kbarnes@gedae.com), James Steed (jsteed@gedae.com)

Gedae, Inc., 1247 N. Church St., Suite 5, Moorestown, NJ 08057

Introduction

Hardware cache management is used in a majority of chip

designs (including major Intel architecture and Power

architecture chips) to manage the movement of data and

instructions from remote slow memory to local fast

memory. Hardware cache management is heuristic and

cannot optimally manage movement for all applications.

Additionally it takes up chip real estate that could be used

for floating point operations (FLOPs). Several recent chip

designs have radically removed the hardware cache

manager, including the Cell Broadband Engine (Cell/B.E.)

processor and ClearSpeed CSX700, using scratchpad

memory instead of cache and devoting real estate to more

cores and ALU paths at the expense of ease of

programming. The size limitations for on-chip scratchpad

memory make large programs difficult to implement and

necessitate orchestrating the movement of both data and

instructions (overlays) from off-chip memory to on-chip

memory in the code. Both approaches to cache

management are flawed. We propose moving cache

management from the burden of the programmer or the

burden of the hardware to the burden of the compiler.

Synthetic Aperture Radar (SAR) benchmarks are provided

to illustrate performance improvement using the Gedae

compiler on hardware cache architectures and its use as an

enabling technology for scratchpad memory architectures.

Data Caching

Large data sets can often be decomposed to make better use

of on-chip memory, often referred to as stripmining the

data. In scratchpad memory architectures, the application

may not be possible unless the data is stripmined in small

enough portions that the data fits in local memory. In

hardware cache architectures, the cache usually works in

concert with virtual memory to guarantee correct behavior,

however it is not guaranteed to be efficient.

As a case study, consider the implementation of the signal

processing portion of the SAR benchmark. This SAR

algorithm has two key stages: the range processing of the

rows of the matrix and the azimuth processing of the

columns of the matrix. To distribute the algorithm a

distributed transpose – or corner turn – is performed

between the two stages to redistribute the data. If the input

image is size RxC, the range processing processes vectors

of size C, and the azimuth processing processes vectors of

size 2*R. The algorithm can be coded as

r_in[j](i) = in[i][j];//mat-to-vec

r_out[j] = range(r_in);

az_in[i](j) = r_out[j](i);//cturn

az_out[i2] = azimuth(az_in);

out[j][i] = az_out[i](j);//select

For this benchmark, the Gedae language exposes the

situations where stripmining can be applied. The range and

azimuth stages are specified as rowwise operates that

naturally can be processed N rows at a time.

An experiment was performed to port the SAR benchmark

to a multiprocesor VMX board and determine the speedup

between four core, eight core, and sixteen core systems.

The VMX board is based on the FreeScale PowerPC 8641D

processor which has 1MB L2 cache for both data and

instructions. Processing a 512x2048 complex matrix in all

cases, code with no software cache optimization achieves

superlinear speedup. Because the image size stayed

constant, the workload granularity decreases as the number

of processors increases. The only difference between the

implementations is the number of vectors processed at a

time; the application processes 8/P MB in the range

processing and 16/P MB in the azimuth processing where P

is the number of cores. The 16 core implementation

achieves better performance because there is less reliance

on the hardware to manage the cache.

The Gedae compiler can compensate for the size of cache

and adjust the implementation to better stripmine the data.

Using automated cache management, a 72% improvement

is achieved on the 4 core implementation, and all

implementations are improved. Performance vs. the

number of cores is now linear.

Table 1 – Performance Improvement in 512x2048 SAR

with Automated Software Cache Management

 4 cores 8 cores 16 cores

Default 0.205 s 0.0939 s 0.0354 s

Gedae 0.119 s 0.0624 s 0.0315 s

% Diff 72% 50% 12%

The same automated stripmining capability can be used to

enable porting applications to architectures that use

scratchpad memory. The compiler stripmines data and

insert DMA calls into the application. The compiler is

capable of handling all the careful data flow planning and

organization that must be done to make sure data arrives

just as it is ready to be processed, overlapping

communication and processing with double buffering to

maintain throughput. Performance results on the Cell/B.E.

architecture have been reported in [1] and [4].

Instruction Caching

Large program sizes can have a similar effect on

programmability of scratchpad memory based architectures.

The size of the scratchpad memory on a ClearSpeed

CSX700 is 128 kB and on a Cell/B.E.’s SPE is 256 kB.

With such modest sized local memory and competing high

demands for data storage in the same memory, programs

are often decomposed temporally into code overlays.

While the problem is more profound for scatchpad based

architectures, potentially performance benefits can be

achieved on hardware cache architectures if instructions are

more intelligently decomposed into overlays.

The Gedae compiler provides a method for automatically

implementing code overlays for an application. The

capability has been demonstrated on the Cell/B.E.

architecture and is being used on a production program.

The compiler forms threads by scheduling the execution of

kernels at compile time. Overlays are formed by

decomposing those thread schedules into subschedules and

building the subschedule into an overlay. Each kernel is

built into separate object files, allowing overlays to be

created from collections of kernels. Subschedules are

identified by analyzing the application for stripmining

opportunities; if data is stripmined, there is a portion of

code that is reused several times before being discarded,

forming a natural overlay. Additionally, thread schedules

can be decomposed temporarily (like pipeline stages) to

create overlays.

The overlays form a tree structure where the root of the tree

is retained in memory, and each node below the root

represents a subschedule of the parent node. The Gedae

language provides knowledge to the compiler which makes

the generation of this tree structure possible, including

where each pointer is used and how it is used (read, write,

or both). The compiler is able to manage state information

more effectively using the tree model. The compiler marks

all state data that must be retained between overlay

executions and manages the storage and retrieval of state

data in system memory during context switches. As the

tree is descended at runtime, data from parent overlays that

is used in child overlays can be retained. As the tree is

ascended, data that is no longer relevant is easily discarded.

Additionally, this tree structure includes conditional

execution; if data can be branched to N different paths, only

the code for the path that is followed is downloaded.

All overlays are built at compile time and loaded into

system memory at program initialization, thus the total time

for a context switch is the time to put (upload) the

preceding overlay’s state information into system memory

and get (download) the next overlay’s object into the

destination region in the on-chip memory. The tree

structure also provides the opportunity to double buffer the

loading of code if the on chip memory is sufficiently large.

Aside from the bandwidth limitations of the system

memory controller (25.6 GB/s on the Cell/B.E. architecture

(see [1] for a discussion), 4 GB/s on the ClearSpeed

architecture), there is very little overhead in an overlay

context switch. An overlay manager is included in the SPE

image, and all overlay control resides on the SPEs. A

context switch between the three stages of the SAR

algorithm (range, corner turn, azimuth) takes approximately

40 µs for all 8 SPEs, where the overlays range in size from

42 to 64 kB. (A context switch to a small overlay can be as

small as 1 µs.) This time includes several small transfers

(putting state data) and one large transfer (getting the new

overlay), and there may be competition over the system

memory controller as other processors get and put data.

As a comparison, IBM’s Cell Software Development Kit

(Cell SDK) includes the capability to create overlays

through the creation of linker scripts. Similar to the Gedae

compiler’s capability, the linker script allows for the

creation of a tree structure of overlays where the root of the

tree remains resident in memory. The Cell SDK’s overlay

capability does not manage state; all data not in the main

overlay is considered transient. The IBM XLC compiler

can automate the creation of these overlays.

The overhead of the Cell SDK overlay context switch is

high. Included in the Cell SDK are several overlay

examples. The most substantial is a large matrix processing

example. The example uses two overlays, one sized 20187

B and one sized 2276 B. The example can be run with and

without overlays. The runtime with overlays is 11.26 ms,

and the runtime without overlays is 10.75 ms. For this

example, the cumulative overlay context switch time is 0.51

ms for a single SPE on a modest sized overlay. Data is only

retrieved (no state is stored), and there is no other

competition for the memory bandwidth in this example as

all program data resides in local storage.

Conclusions

The Gedae compiler is able to automatically manage data

and instruction caching to both enable programming of

scratchpad based architectures and optimize processing on

hardware cache based architectures. The automated code

overlay capability provided by the Gedae compiler provides

better performance (on the order of 10,000-50,000x) and

more flexibility than competing solutions. Cache

management can be jointly optimized based on the

application structure and the target architecture, and the

optimizations are done at compile time eliminating almost

if not all of the runtime overhead. As a result, applications

which were previously unthinkable on processors with

lightweight cores are now easily generatable from Gedae.

That is, applications can now be automatically decomposed

into overlays small enough for lightweight cores with

minimal additional effort from the programmer. Even for

processors that use hardware cache, Gedae provides better

cache locality and therefore runs more efficiently.

References

[1] Barnes, K. et al. “Implementation of 2-D FFT on the Cell

Broadband Engine Architecture,” HPEC, 2009.

[2] Curtiss Wright Controls. “The CHAMP-AV6 VPX-REDI

Digital Signal Processing Card - Maximizing Performance

with Minimal Porting Effort,” 2010.

<http://www.cwcembedded.com>.

[3] IBM. Software Development Kit for Multicore Acceleration

Version 3.0 Programmer’s Guide, SC33-8325-02, 2007.

<http://www.ibm.com>.

[4] Lundgren, W. et al. “Simple, Efficient, Portable

Decomposition of Large Data Sets,” HPEC, 2008.

