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Introduction 

Hardware cache management is used in a majority of chip 

designs (including major Intel architecture and Power 

architecture chips) to manage the movement of data and 

instructions from remote slow memory to local fast 

memory.  Hardware cache management is heuristic and 

cannot optimally manage movement for all applications.  

Additionally it takes up chip real estate that could be used 

for floating point operations (FLOPs).  Several recent chip 

designs have radically removed the hardware cache 

manager, including the Cell Broadband Engine (Cell/B.E.) 

processor and ClearSpeed CSX700, using scratchpad 

memory instead of cache and devoting real estate to more 

cores and ALU paths at the expense of ease of 

programming.  The size limitations for on-chip scratchpad 

memory make large programs difficult to implement and 

necessitate orchestrating the movement of both data and 

instructions (overlays) from off-chip memory to on-chip 

memory in the code.  Both approaches to cache 

management are flawed.  We propose moving cache 

management from the burden of the programmer or the 

burden of the hardware to the burden of the compiler.  

Synthetic Aperture Radar (SAR) benchmarks are provided 

to illustrate performance improvement using the Gedae 

compiler on hardware cache architectures and its use as an 

enabling technology for scratchpad memory architectures. 

Data Caching  

Large data sets can often be decomposed to make better use 

of on-chip memory, often referred to as stripmining the 

data.  In scratchpad memory architectures, the application 

may not be possible unless the data is stripmined in small 

enough portions that the data fits in local memory.  In 

hardware cache architectures, the cache usually works in 

concert with virtual memory to guarantee correct behavior, 

however it is not guaranteed to be efficient. 

As a case study, consider the implementation of the signal 

processing portion of the SAR benchmark.  This SAR 

algorithm has two key stages: the range processing of the 

rows of the matrix and the azimuth processing of the 

columns of the matrix.  To distribute the algorithm a 

distributed transpose – or corner turn – is performed 

between the two stages to redistribute the data.  If the input 

image is size RxC, the range processing processes vectors 

of size C, and the azimuth processing processes vectors of 

size 2*R.  The algorithm can be coded as 

r_in[j](i) = in[i][j];//mat-to-vec 

r_out[j] = range(r_in); 

az_in[i](j) = r_out[j](i);//cturn 

az_out[i2] = azimuth(az_in); 

out[j][i] = az_out[i](j);//select 

For this benchmark, the Gedae language exposes the 

situations where stripmining can be applied.  The range and 

azimuth stages are specified as rowwise operates that 

naturally can be processed N rows at a time.  

An experiment was performed to port the SAR benchmark 

to a multiprocesor VMX board and determine the speedup 

between four core, eight core, and sixteen core systems.  

The VMX board is based on the FreeScale PowerPC 8641D 

processor which has 1MB L2 cache for both data and 

instructions.  Processing a 512x2048 complex matrix in all 

cases, code with no software cache optimization achieves 

superlinear speedup.  Because the image size stayed 

constant, the workload granularity decreases as the number 

of processors increases.  The only difference between the 

implementations is the number of vectors processed at a 

time; the application processes 8/P MB in the range 

processing and 16/P MB in the azimuth processing where P 

is the number of cores.  The 16 core implementation 

achieves better performance because there is less reliance 

on the hardware to manage the cache. 

The Gedae compiler can compensate for the size of cache 

and adjust the implementation to better stripmine the data.  

Using automated cache management, a 72% improvement 

is achieved on the 4 core implementation, and all 

implementations are improved.  Performance vs. the 

number of cores is now linear. 

Table 1 – Performance Improvement in 512x2048 SAR 

with Automated Software Cache Management 

 4 cores 8 cores 16 cores 

Default 0.205 s 0.0939 s 0.0354 s 

Gedae 0.119 s 0.0624 s 0.0315 s 

% Diff 72% 50% 12% 

The same automated stripmining capability can be used to 

enable porting applications to architectures that use 

scratchpad memory.  The compiler stripmines data and 

insert DMA calls into the application.  The compiler is 

capable of handling all the careful data flow planning and 

organization that must be done to make sure data arrives 

just as it is ready to be processed, overlapping 

communication and processing with double buffering to 

maintain throughput.  Performance results on the Cell/B.E. 

architecture have been reported in [1] and [4]. 

Instruction Caching 

Large program sizes can have a similar effect on 

programmability of scratchpad memory based architectures.  

The size of the scratchpad memory on a ClearSpeed 

CSX700 is 128 kB and on a Cell/B.E.’s SPE is 256 kB.  



 

With such modest sized local memory and competing high 

demands for data storage in the same memory, programs 

are often decomposed temporally into code overlays.  

While the problem is more profound for scatchpad based 

architectures, potentially performance benefits can be 

achieved on hardware cache architectures if instructions are 

more intelligently decomposed into overlays.  

The Gedae compiler provides a method for automatically 

implementing code overlays for an application.  The 

capability has been demonstrated on the Cell/B.E. 

architecture and is being used on a production program.  

The compiler forms threads by scheduling the execution of 

kernels at compile time.  Overlays are formed by 

decomposing those thread schedules into subschedules and 

building the subschedule into an overlay.  Each kernel is 

built into separate object files, allowing overlays to be 

created from collections of kernels.  Subschedules are 

identified by analyzing the application for stripmining 

opportunities; if data is stripmined, there is a portion of 

code that is reused several times before being discarded, 

forming a natural overlay.  Additionally, thread schedules 

can be decomposed temporarily (like pipeline stages) to 

create overlays.   

The overlays form a tree structure where the root of the tree 

is retained in memory, and each node below the root 

represents a subschedule of the parent node.  The Gedae 

language provides knowledge to the compiler which makes 

the generation of this tree structure possible, including 

where each pointer is used and how it is used (read, write, 

or both).  The compiler is able to manage state information 

more effectively using the tree model.  The compiler marks 

all state data that must be retained between overlay 

executions and manages the storage and retrieval of state 

data in system memory during context switches.  As the 

tree is descended at runtime, data from parent overlays that 

is used in child overlays can be retained.  As the tree is 

ascended, data that is no longer relevant is easily discarded. 

Additionally, this tree structure includes conditional 

execution; if data can be branched to N different paths, only 

the code for the path that is followed is downloaded.   

All overlays are built at compile time and loaded into 

system memory at program initialization, thus the total time 

for a context switch is the time to put (upload) the 

preceding overlay’s state information into system memory 

and get (download) the next overlay’s object into the 

destination region in the on-chip memory.  The tree 

structure also provides the opportunity to double buffer the 

loading of code if the on chip memory is sufficiently large.  

Aside from the bandwidth limitations of the system 

memory controller (25.6 GB/s on the Cell/B.E. architecture 

(see [1] for a discussion), 4 GB/s on the ClearSpeed 

architecture), there is very little overhead in an overlay 

context switch.  An overlay manager is included in the SPE 

image, and all overlay control resides on the SPEs.  A 

context switch between the three stages of the SAR 

algorithm (range, corner turn, azimuth) takes approximately 

40 µs for all 8 SPEs, where the overlays range in size from 

42 to 64 kB.  (A context switch to a small overlay can be as 

small as 1 µs.)  This time includes several small transfers 

(putting state data) and one large transfer (getting the new 

overlay), and there may be competition over the system 

memory controller as other processors get and put data. 

As a comparison, IBM’s Cell Software Development Kit 

(Cell SDK) includes the capability to create overlays 

through the creation of linker scripts.  Similar to the Gedae 

compiler’s capability, the linker script allows for the 

creation of a tree structure of overlays where the root of the 

tree remains resident in memory.  The Cell SDK’s overlay 

capability does not manage state; all data not in the main 

overlay is considered transient.  The IBM XLC compiler 

can automate the creation of these overlays. 

The overhead of the Cell SDK overlay context switch is 

high.  Included in the Cell SDK are several overlay 

examples.  The most substantial is a large matrix processing 

example.  The example uses two overlays, one sized 20187 

B and one sized 2276 B.  The example can be run with and 

without overlays.  The runtime with overlays is 11.26 ms, 

and the runtime without overlays is 10.75 ms.  For this 

example, the cumulative overlay context switch time is 0.51 

ms for a single SPE on a modest sized overlay.  Data is only 

retrieved (no state is stored), and there is no other 

competition for the memory bandwidth in this example as 

all program data resides in local storage. 

Conclusions 

The Gedae compiler is able to automatically manage data 

and instruction caching to both enable programming of 

scratchpad based architectures and optimize processing on 

hardware cache based architectures.  The automated code 

overlay capability provided by the Gedae compiler provides 

better performance (on the order of 10,000-50,000x) and 

more flexibility than competing solutions.  Cache 

management can be jointly optimized based on the 

application structure and the target architecture, and the 

optimizations are done at compile time eliminating almost 

if not all of the runtime overhead.   As a result, applications 

which were previously unthinkable on processors with 

lightweight cores are now easily generatable from Gedae.  

That is, applications can now be automatically decomposed 

into overlays small enough for lightweight cores with 

minimal additional effort from the programmer.    Even for 

processors that use hardware cache, Gedae provides better 

cache locality and therefore runs more efficiently.  
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