

Development of a Real-Time Parallel UHF SAR Image Processor

Matthew Alexander, Michael Vai, Thomas Emberley, Stephen Mooney, Joseph Rizzari

HPEC 2010

September 16, 2010

This work is sponsored by the Army under Air Force Contract FA8721-05-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

Problem Statement

- Objective: Design and develop a real-time parallel SAR image processing system for rapid integration on an airborne Dash-8 platform
- Method: Use Open System Architecture real-time development methodology to produce a parallel image processing system that executes on ruggedized COTS hardware

- **Programmatic constraints:**
 - Size, weight, and power (SWaP)
 - 1500 lbs, 10kW
 - Demanding real-time requirement
 - SAR image formation and change detection in less than 10 minutes
 - Schedule
 - 18 months

- Serial processing development:
 - 1. Finalize Matlab signal processing stream
 - 2. Convert Matlab code to serial C/C++ code
- Parallel processing development:
 - 1. Parallelize Matlab code using pMatlab to determine optimal mappings
 - 2. Convert serial C/C++ code to parallel C/C++ code (use pMatlab maps)

Open Architecture Development Methodology enables rapid prototyping Middleware software allows for scalable infrastructure on different hardware configurations

Results

- 136 Intel cores perform real-time image processing within programmatic constraints
 - 1.632 TFLOPS throughput
 - 544 Gbytes Memory
 - 10 Tbytes storage

