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Abstract 
This poster describes the evolution, use, and utility of a 
low-level cloud (a “MIST”) built out of MIPS and ARM-
based embedded Linux devices. Most of these devices 
started out as Wireless Access Points but have found a new 
niche as infrastructure support processors. They are cheap 
and low-powered and can therefore be fielded in places to 
do supercomputing support for previously unsupported 
applications. 

Introduction 
There is a class of HPC problems for which small 
“underpowered” clusters are ideally suited. The descriptor 
“underpowered” is inappropriate in this case; the CPU is 
balanced to the chokepoints of RAM and disk subsystems 
due not only to the low clock speeds and meager 
functionality of the CPU but also to the inadequacies of 
matching memory access speeds from which even high-end 
systems suffer. These HPC problems include those that 
require considerable I/O but little processing. In May 2009, 
researchers at Carnegie Mellon University demonstrated a 
system entitled FAWN (a “Flexible Array of Wimpy 
Nodes”), which represented a proof of the concept of 
efficient management of scan-bound and seek-bound 
workloads [1]. We have constructed a cluster following 
some of the tenets established with this new class of low-
power designs, creating a scalable mesh of purpose-built 
nodes to test throughput and processing of short messages. 
As the next generation of low-power clusters demonstrate 
their value in managing certain workloads, we endeavour to 
optimize the hardware designs and queuing systems. Part of 
the impetus of this project was to determine the class of 
problems for which low-power clouds are best suited; that 
is to say, whether they could hold their own and compete on 
an equal footing with standard HPC clusters in raw OP/s, 
OP/s/$, or OP/s per Watt (or Joule) for certain applications.   

 

Why MIPS or Arm? 
There have been many methods developed over the years to 
mask the disparity in speeds and bus widths between the 
processor and the memory subsystems. Backus [2], for 
instance, coined the expression ‘von Neumann bottleneck” 
to describe the serial nature of communication between the 
host processor and main memory. Methods such as pre-
fetching and branch-prediction are two of the better known 
remedies for this I/O misalignment. These are ways to get 
incrementally better performance out of a processor by 
getting more operations per cycle that, in the aggregate, will 

reduce overall cycle use for a given process. Low-power 
processors solve this problem by not engaging it. Here 
again, in the aggregate, a higher node count makes up for 
the performance inadequacies of the individual node. Note 
the details of the processors in our test setups described 
below. The Netgear WGT634u was popular with the 
OpenWRT programming community because of its 
relatively large RAM sizes but otherwise does not compare 
favorably with embedded Linux devices. 

 

Table 1: Mesh Test Setups 

Platform 
 Netgear WGT634u Marvell SheevaPlug 
CPU 200Mhz Broadcom 

BCM3302 
1.2Ghz Feroceon 
88FR131 

BogoMIPS 198.65 1192.75 
Flash 32M 512M 
RAM 8M 512M 
NIC FE GE 
Nodes 8 - 35 10 

 
IEEE 802.11s Mesh 
Our initial benchmarking applications had no math 
component. We wanted to observe the performance of a 
large (large enough to generate sufficient traffic to create a 
“noisy” environment) wireless mesh utilizing the nascent 
802.11s protocol as a primary wireless protocol, although 
802.11g would be running as well. We ran enough traffic 
over the network to create a considerably noisy 
environment and thereby had a substantial number of 
packet collisions to force the Mesh to adapt to the 
environment.  

The Test Suite 
Prior work has been done on testing apps that mimic the 
operations of Facebook’s memcached or Google’s Hadoop / 
MapReduce scheme.  Our work stayed within the confines 
of network testing; standard TCP test using nttcp, and 
netpipe over mpi. Performance numbers were predictably 
disparate. A 2.6.24 kernel compile took 369m27s. An 
identical kernel compile on a single SheevaPlug took 
25m16s. Note that the (emulated) floating point 
performance on the MIPS machines was substantially 
worse that those on the ARM9 based boxes. The Broadcom 
MIPS processors are “wimpy” indeed. While there is a 
choice of 3 floating-point emulators on the SheevaPlug 
(NWFPE, VPE, and the new FastFPE) you are generally 
stuck with the Algorithmics/MIPS FPU Emulator on the 



WGT634u. Ethernet tests were encouraging on the 
SheevaPlug. The SheevaPlug often got better than half their 
specified upper end. Nttcp and netpipe indicated better than 
500 Mbps in back-to-back and better than 450 Mbps in 
switched fabric tests. Netpipe numbers across mesh 
connections, however, were extraordinarily bad. Even when 
we forced the connections into the highest available rate 
(54Mbps), we rarely got above 6Mbps peak in pairwise 
tests. Iperf tests met with similar performance. We plan on 
building a considerably larger WGT634u cluster (on the 
order of 200 nodes) in July 2010 to try and improve our 
mesh throughput at which time we will upgrade the 
wireless drivers and compat-wireless libraries if necessary.  

 
 

 
Figure 1: “Microclusters” of the WGT634u. One of our test 
setups created a tree of 35 nodes; seven sub-clusters of five 

nodes each. This was so we could fully involve an 8 port switch 
(counting uplink to the head node). 

 
Figure 2: The 24 WGT634u node test setup on a switched 

fabric. 

 
Solar-Powered Supercomputing 
We have run these clusters a number of times off of a live 
Solar Panel for demonstration purposes. It is unclear that 
this would ever be of any utility, but it does point out the 
low powered aspects of this approach. We have certainly 
tested the same hardware in the field running their native 
OS and application (Open-Mesh with 802.11s or OLSR 
routing). In fact, the platform of choice for wireless 
network neighborhoods nowadays is the Accton board 
running a processor from the Atheros SoC family. The 
AR5312 is a popular processor in the OpenWRT 
community. In June 2009, we demonstrated 16 WGT634u 

running off of a 200W solar panel and later that month we 
recreated the demo with 10 SheevaPlugs. Average usage 
was 77W on the SheevaPlug cluster. Power usage was a 
little higher than we predicted on WGT634us. The 
WGT634us were easier to work with since they were a 12v 
design. The SheevaPlugs are 5v so we had to design an 
unusual circuit / charge controller for them. We anticipate 
testing the Tensilica and TI OMAP processor under a 
similar methodology in the near future.  

 

 
Figure 3: 16 of theWGT634u intercommunicating via 802.11g 
and 802.11s. This was with the primary bandwidth test device, 

wlan0, which becomes mesh0 under 802.11s. 

 
Figure 4: Pile of 10 SheevaPlugs powered by a solar panel in 

the background. Even with a power-hungry switch this ran at 
well under 100W. 
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