
The MIST, a local, secure cloud context and 802.11s testbed
G. Dempsey 1, R. Feher 1, L. Gordon 2, K. Keville 3

1 Department of Systems Engineering, USMA, West Point, NY
Gregory.Dempsey@usma.edu, Ronald.Feher@usma.edu

 2 Department of Physics, USMA, West Point, NY
Lindsay.Gordon@usma.edu

3 Institute for Soldier Nanotechnologies, MIT, Cambridge, MA
KLK@mit.edu

Abstract
This poster describes the evolution, use, and utility of a
low-level cloud (a “MIST”) built out of MIPS and ARM-
based embedded Linux devices. Most of these devices
started out as Wireless Access Points but have found a new
niche as infrastructure support processors. They are cheap
and low-powered and can therefore be fielded in places to
do supercomputing support for previously unsupported
applications.

Introduction
There is a class of HPC problems for which small
“underpowered” clusters are ideally suited. The descriptor
“underpowered” is inappropriate in this case; the CPU is
balanced to the chokepoints of RAM and disk subsystems
due not only to the low clock speeds and meager
functionality of the CPU but also to the inadequacies of
matching memory access speeds from which even high-end
systems suffer. These HPC problems include those that
require considerable I/O but little processing. In May 2009,
researchers at Carnegie Mellon University demonstrated a
system entitled FAWN (a “Flexible Array of Wimpy
Nodes”), which represented a proof of the concept of
efficient management of scan-bound and seek-bound
workloads [1]. We have constructed a cluster following
some of the tenets established with this new class of low-
power designs, creating a scalable mesh of purpose-built
nodes to test throughput and processing of short messages.
As the next generation of low-power clusters demonstrate
their value in managing certain workloads, we endeavour to
optimize the hardware designs and queuing systems. Part of
the impetus of this project was to determine the class of
problems for which low-power clouds are best suited; that
is to say, whether they could hold their own and compete on
an equal footing with standard HPC clusters in raw OP/s,
OP/s/$, or OP/s per Watt (or Joule) for certain applications.

Why MIPS or Arm?
There have been many methods developed over the years to
mask the disparity in speeds and bus widths between the
processor and the memory subsystems. Backus [2], for
instance, coined the expression ‘von Neumann bottleneck”
to describe the serial nature of communication between the
host processor and main memory. Methods such as pre-
fetching and branch-prediction are two of the better known
remedies for this I/O misalignment. These are ways to get
incrementally better performance out of a processor by
getting more operations per cycle that, in the aggregate, will

reduce overall cycle use for a given process. Low-power
processors solve this problem by not engaging it. Here
again, in the aggregate, a higher node count makes up for
the performance inadequacies of the individual node. Note
the details of the processors in our test setups described
below. The Netgear WGT634u was popular with the
OpenWRT programming community because of its
relatively large RAM sizes but otherwise does not compare
favorably with embedded Linux devices.

Table 1: Mesh Test Setups

Platform
 Netgear WGT634u Marvell SheevaPlug
CPU 200Mhz Broadcom

BCM3302
1.2Ghz Feroceon
88FR131

BogoMIPS 198.65 1192.75
Flash 32M 512M
RAM 8M 512M
NIC FE GE
Nodes 8 - 35 10

IEEE 802.11s Mesh
Our initial benchmarking applications had no math
component. We wanted to observe the performance of a
large (large enough to generate sufficient traffic to create a
“noisy” environment) wireless mesh utilizing the nascent
802.11s protocol as a primary wireless protocol, although
802.11g would be running as well. We ran enough traffic
over the network to create a considerably noisy
environment and thereby had a substantial number of
packet collisions to force the Mesh to adapt to the
environment.

The Test Suite
Prior work has been done on testing apps that mimic the
operations of Facebook’s memcached or Google’s Hadoop /
MapReduce scheme. Our work stayed within the confines
of network testing; standard TCP test using nttcp, and
netpipe over mpi. Performance numbers were predictably
disparate. A 2.6.24 kernel compile took 369m27s. An
identical kernel compile on a single SheevaPlug took
25m16s. Note that the (emulated) floating point
performance on the MIPS machines was substantially
worse that those on the ARM9 based boxes. The Broadcom
MIPS processors are “wimpy” indeed. While there is a
choice of 3 floating-point emulators on the SheevaPlug
(NWFPE, VPE, and the new FastFPE) you are generally
stuck with the Algorithmics/MIPS FPU Emulator on the

WGT634u. Ethernet tests were encouraging on the
SheevaPlug. The SheevaPlug often got better than half their
specified upper end. Nttcp and netpipe indicated better than
500 Mbps in back-to-back and better than 450 Mbps in
switched fabric tests. Netpipe numbers across mesh
connections, however, were extraordinarily bad. Even when
we forced the connections into the highest available rate
(54Mbps), we rarely got above 6Mbps peak in pairwise
tests. Iperf tests met with similar performance. We plan on
building a considerably larger WGT634u cluster (on the
order of 200 nodes) in July 2010 to try and improve our
mesh throughput at which time we will upgrade the
wireless drivers and compat-wireless libraries if necessary.

Figure 1: “Microclusters” of the WGT634u. One of our test
setups created a tree of 35 nodes; seven sub-clusters of five

nodes each. This was so we could fully involve an 8 port switch
(counting uplink to the head node).

Figure 2: The 24 WGT634u node test setup on a switched

fabric.

Solar-Powered Supercomputing
We have run these clusters a number of times off of a live
Solar Panel for demonstration purposes. It is unclear that
this would ever be of any utility, but it does point out the
low powered aspects of this approach. We have certainly
tested the same hardware in the field running their native
OS and application (Open-Mesh with 802.11s or OLSR
routing). In fact, the platform of choice for wireless
network neighborhoods nowadays is the Accton board
running a processor from the Atheros SoC family. The
AR5312 is a popular processor in the OpenWRT
community. In June 2009, we demonstrated 16 WGT634u

running off of a 200W solar panel and later that month we
recreated the demo with 10 SheevaPlugs. Average usage
was 77W on the SheevaPlug cluster. Power usage was a
little higher than we predicted on WGT634us. The
WGT634us were easier to work with since they were a 12v
design. The SheevaPlugs are 5v so we had to design an
unusual circuit / charge controller for them. We anticipate
testing the Tensilica and TI OMAP processor under a
similar methodology in the near future.

Figure 3: 16 of theWGT634u intercommunicating via 802.11g
and 802.11s. This was with the primary bandwidth test device,

wlan0, which becomes mesh0 under 802.11s.

Figure 4: Pile of 10 SheevaPlugs powered by a solar panel in

the background. Even with a power-hungry switch this ran at
well under 100W.

References
 [1] Vijay Vasudevan, Jason Franklin, David Andersen, Amar

Phanishayee, Lawrence Tan, Michael Kaminsky, and Iulian
Moraru, FAWNdamentally Power-efficient Clusters, Proc.
12th Workshop on Hot Topics in Operating Systems (HotOS
XII), Monte Verita, May 2009.

[2] Backus, J. Can programming be liberated from the von
Neumann style? A functional style and its algebra of
programs. Communications of the ACM 21, 8, (August 1978),
613-641.

