
Performance Characterization of the Tile Processor Architecture:
Lessons Learned

Eric Grobelny, Jim Passwater, and Andrew White

Honeywell Aerospace, Defense, and Space Systems

Clearwater, FL

eric.grobelny@honeywell.com

Abstract
As silicon technologies progress, they get closer and closer

to their physical limitations. No longer can we squeeze

more performance from increasing clock frequencies, but

rather, we must look to parallelization to improve

performance. As feature sizes shrink and the number of

transistors on a single die increases, it becomes

advantageous to incorporate more than one compute core

into the chip. In fact, most CPUs sold today have at least

two cores. While the desktop and workstation realm of

commercial computing typically max out at eight cores,

high-performance computing platforms are using 10s to

100s of cores.

The Tile64 from Tilera is one such device that uses 64

general-purpose processing cores interconnected in a mesh

topology to provide massive parallelism with high-

performance peripherals to support memory and I/O

operations off-chip [1]. Figure 1 illustrates the Tile64

architecture and its various components and interconnects.

Figure 1: Tile64 architectural diagram [courtesy of Tilera].

While the capabilities and theoretical performance of the

Tile64 are impressive on paper, efficiently utilizing its

topology and resources are paramount in order to squeeze

the most performance from the device. In fact, care must

be taken to ensure highly efficient code when dealing with

not only the architecture, but also the compiler [2]. In this

paper, we will discuss four topic areas that deal with

efficient use of the complex Tilera architecture. These

topics include:

1) Memory interfaces – focusing on DMA

writes/reads to and from various banks of

memory with and without the use of shared

memory

2) Inter-tile networks – focusing on the

performance of the User Dynamic Network

(UDN), the Memory Dynamic Network (MDN),

and the I/O Dynamic Network (IDN).

3) Inter-tile communication mechanisms –

focusing on message passing and channels

(buffered, streaming, and raw channel types)

4) Power-saving features/techniques – focusing on

sleep mode and other ways to reduce power

consumption

For each of these topics, we will discuss the setup,

benchmarks, and tests executed to evaluate the

performance implications of using one

mechanism/library/programming model over another.

Rather than explaining the reasons behind our reported

performance numbers, we will focus on the “lessons

learned” by demonstrating the performance gains/losses

under various scenarios and providing recommendations

for using the best mechanisms for those scenarios.

After presenting the lessons learned from the Tile64, we

will apply them to an innovative, low-cost development

board called Symphony [3] that incorporates a Xilinx

FPGA with a radiation-tolerant version of the Tile64 called

Maestro. Maestro was developed under the OPERA

program in order to bring high-performance computing to

space application. For more details on Maestro and Opera,

see [4]. The analysis conducted using Maestro will provide

insight on the advantages and disadvantages of the

radiation-tolerant chip over the vanilla Tile64. It will also

be used to demonstrate the real-world gains realized

through the optimizations identified in the previous study.

References
[1] Tilera Corporation, “Tile Processor Architecture Overview,”

Tilera Corporation, Doc. No. UG100, Release 1.1, April

2009.

[2] J. Richardson, C. Massie, H. Lam, K. Gosrani, and A.

George, “Space Applications on Tilera,” 3rd IEEE

International Conference on Space Mission Challenges for

Information Technology (SMC-IT), Pasadena, CA, July

2009.

[3] A. White, “The Honeywell Symphony Maestro Exploration

Platform.” Internal document, Honeywell, Space Electronic

Systems, Clearwater, FL, 2010.*

[4] M. Malone, “OPERA RHBD Multi-core,” Military and

Aerospace Programmable Logic Devices (MAPLD)

Conference, Greenbelt, MD, August 2009.

*Available upon request.

