
Comparison of Multicore Processors using Sourcery VSIPL++
Brooks Moses, Don McCoy, Justin Voo, Stefan Seefeld

CodeSourcery, Inc.

{brooks, don, justin, stefan}@codesourcery.com

Introduction

The current HPEC processor landscape contains a wide

variety of processors, ranging from homogeneous multicore

CPUs to heterogeneous manycore GPU-based systems.

Due to the difficulty of porting low-level code from one

type of processor to another, it is often important to choose

a processor type early in the lifetime of a programming

cycle. Likewise, because of the architectural differences,

the real-world performance of these processors cannot be

summed up in a single number such as floating-point

operations per second (FLOPS); one processor may

perform substantially better than another on one algorithm,

while performing substantially worse on another. As a

result, selecting an appropriate processor for a given

application is not only important, but difficult.

CodeSourcery's experiences porting Sourcery VSIPL++ to

a range of current architectures can provide a broad insight

into the multidimensional characterization of processor

performance. The VSIPL++ API contains over a hundred

functions for signal, vector, and image processing, ranging

from elementwise functions to matrix algebra, Fourier

transforms, and filters, and the various Sourcery VSIPL++

products contain implementations of these for multicore

x86 and Power, Cell/B.E., and NVIDIA CUDA processors,

covering much of the available range of architecture types.

Thus, we can show performance results covering a range of

identical operations and different platforms, drawing

quantitative conclusions about the comparative

performance characteristics and how these relate to the

characteristics of the operation being performed.

Processor Types

To a first approximation, multicore processor cores can be

placed along a one-dimensional spectrum of size and

complexity -- or, more precisely, a spectrum of the

proportion of the core devoted to instruction processing in

relation to arithmetic logic.

At one end of this spectrum are the larger x86 and Power

CPU cores, which contain a vast quantity of transistors

devoted to out-of-order scheduling, branch prediction,

multiple-pipeline dispatch, and memory cache

management. The arithmetic logic units make up a

relatively small fraction of the processor, but the

sophisticated infrastructure around it enables the processor

to use them very efficiently on nearly arbitrary code and

algorithms.

In the middle are cores such as the the SPUs on a Cell/B.E.,

where each core has a complete instruction scheduler, but it

is very simple with in-order execution and largely software-

controlled caching. These require a significant amount of

additional sophistication in the code to make full use of the

processor capabilities, which limits dynamic responsiveness

and adds to the amount of code to be executed, but the

tradeoff is that a higher quantity of arithmetic logic can be

provided for a given size and power. Intel's Larrabee

architecture fits into this category as well, as do Tilera's

manycore processors.

At the other end of the spectrum are GPUs, where a single

instruction execution unit is shared across an array of cores,

such that all of the cores execute the same instructions in

synchrony. This allows a very high proportion of the

processor to be devoted to arithmetic logic, but this can

only be effectively used for code and algorithms with

appropriate parallelism. Very-wide SIMD processors such

as ClearSpeed’s CSX700 likewise fall into this category,

with a high proportion of arithmetic logic units to

instruction execution, and a resulting requirement for large

amounts of fine-grained parallelism in the algorithms.

The processors supported by Sourcery VSIPL++ that will

be discussed in this presentation provide representative

samples from each of these categories. We will discuss

results from a current Intel x86 multicore processor

illustrating the high-instruction-scheduling end of the

spectrum, an IBM Cell/B.E. processor illustrating the

middle range, and an NVIDIA Tesla GPU illustrating the

high-arithmetic SIMD end of the spectrum.

Algorithms

The operations covered in the VSIPL++ API fall into three

major categories: elementwise and reduction operations,

linear algebraic operations such as matrix multiplications

and solvers, and signal-processing operations such as FFTs,

convolutions, and FIR and IIR filters.

Within these algorithms, there are a number of

characteristics that affect the performance of the algorithm.

The ratio of input elements to output elements range from

reduction operators such as summation and averages where

the output is a single element, to operations such as vector

outer products where there are a large number of output

elements for each input element.

For operations where the input and output sizes are

comparable, the number and distribution of the input

elements required to compute each output element vary,

from elementwise operations where an output element is

computed from a single input element, to convolutions and

FIR filters where a small contiguous range of input

elements are involved, to matrix products where a matrix

row and column are involved, and to FFTs and solvers

where every input element is required in the computation of

each output element.

When operations involve inputs from multiple elements,

they also differ in the structure of the cross-linking between

computations. Although FFTs require all of the input

elements for computing each output element, the

computations occur in a pattern of local computation and

global communication, and this pattern is the same for each

element; thus, although the communication can be costly,

spreading the algorithm across parallel computing elements

is relatively trivial. Conversely, each element in an IIR

filter requires the full results from each previous element in

the sequence, and so the naive algorithm provides no

opportunity for parallelism at all. Many of the algebraic

solver algorithms are in the middle of these extremes; early

parts of the computation can be performed in parallel, but

the data dependencies require the final portions of the

algorithm to be performed more sequentially.

Finally, the VSIPL++ API includes a number of operations

computed on matrices viewed as sets of vectors, where the

operation on each vector may involve complicated

computation patterns, but each row (or column) of the

matrix is independent. An example of this is the FFTM

operator, which performs FFTs on each row or column of a

matrix. This provides a second, more coarse-grained level

of parallelism above any fine-grained parallelism in the

underlying operation.

Results

In the presentation, we will show quantitative results for a

number of different operations within the VSIPL++ API,

over a range of significant data sizes. Some preliminary

qualitative examples follow.

The elementwise arithmetic operations are trivially

parallelizable, and one might expect the performance to be

directly related to the amount of arithmetic processing

available on the hardware – with the GPU and Cell

processors showing a dramatic advantage. This turns out

not to be the case in practice, as the operations are so cheap

that the cost is largely driven by memory access rather than

arithmetic. In particular, both the Cell and CUDA versions

have a large-vector performance of only about a 2x-3x

performance increase over a single-core x86 version.

Differences between the two processors show up with

shorter vectors – for a vector of 32k points, the Cell

performance is somewhat lower than that of the x86,

whereas the CUDA version achieves its full performance at

around 1k-2k points.

The importance of memory access shows up in matrix

multiplication as well. Matrix multiplication requires O(N)

computations for each output element, and can be

performed in a block manner so that many of those

computations can read data from cache rather than main

memory. With the large register array on the Cell/B.E.

SPUs, this makes a much more significant difference than it

does with CUDA; we found that matrix-multiply

computations are 3x-4x faster on the Cell/B.E over a range

of sizes. However, an 8-core x86 implementation makes a

strong showing as well; the CUDA version is only 2x faster

on complex data.

The FFTM computations, meanwhile, appear to use the

high floating-point execution speed of the Cell/B.E. and

CUDA to much better advantage. For cases with 1k- to 4k-

point FFTs (such that each FFT fits easily on the local store

of a single Cell/B.E. SPU), the Cell/B.E. version obtains a

speedup of 9x-15x over the x86 version, and the CUDA

version obtains a similar 6x-18x speedup.

Conclusions

The most apparent conclusion from the preliminary results

is that there is no clear universal winner among the

available HPEC processor types. Not only do the

performance comparisons differ strongly across different

operations, but in many cases the absolute performance is

reasonably close – certainly less than the variation one

might expect within a given processor family.

As expected, we show significant differences in relative

performance not only across different operations, but across

different sizes of the same operation. For smaller data

sizes, the flexibility of the CPU cores is a clear benefit.

Likewise, we can see that the non-CPU processors have a

necessary granularity of parallelism to obtain good

performance, and the requirement is much tighter on the

GPU than on the Cell/B.E.

The results given here show comparable numbers for

Cell/B.E. and CUDA operations, and show that these

almost always perform better than our x86 system. We do

not expect this trend to continue; at the time of this writing,

the CUDA version of the Sourcery VSIPL++ library is not

yet complete, and the functions that have been implemented

are largely those that are well-suited to GPU computation.

In the presentation, we anticipate showing results for

operations where the x86 processor is a clear winner on a

similarly large scale.

These results also show that the performance of a given

processor can be strongly influenced by considerations such

as the memory bandwidth and (for coprocessors) the cost of

initiating a computation on the coprocessor. This adds

further considerations to the question of selecting the

optimal processor type.

