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Introduction 

The current HPEC processor landscape contains a wide 

variety of processors, ranging from homogeneous multicore 

CPUs to heterogeneous manycore GPU-based systems.  

Due to the difficulty of porting low-level code from one 

type of processor to another, it is often important to choose 

a processor type early in the lifetime of a programming 

cycle.  Likewise, because of the architectural differences, 

the real-world performance of these processors cannot be 

summed up in a single number such as floating-point 

operations per second (FLOPS); one processor may 

perform substantially better than another on one algorithm, 

while performing substantially worse on another.  As a 

result, selecting an appropriate processor for a given 

application is not only important, but difficult. 

CodeSourcery's experiences porting Sourcery VSIPL++ to 

a range of current architectures can provide a broad insight 

into the multidimensional characterization of processor 

performance.  The VSIPL++ API contains over a hundred 

functions for signal, vector, and image processing, ranging 

from elementwise functions to matrix algebra, Fourier 

transforms, and filters, and the various Sourcery VSIPL++ 

products contain implementations of these for multicore 

x86 and Power, Cell/B.E., and NVIDIA CUDA processors, 

covering much of the available range of architecture types.  

Thus, we can show performance results covering a range of 

identical operations and different platforms, drawing 

quantitative conclusions about the comparative 

performance characteristics and how these relate to the 

characteristics of the operation being performed. 

Processor Types 

To a first approximation, multicore processor cores can be 

placed along a one-dimensional spectrum of size and 

complexity -- or, more precisely, a spectrum of the 

proportion of the core devoted to instruction processing in 

relation to arithmetic logic. 

At one end of this spectrum are the larger x86 and Power 

CPU cores, which contain a vast quantity of transistors 

devoted to out-of-order scheduling, branch prediction, 

multiple-pipeline dispatch, and memory cache 

management.  The arithmetic logic units make up a 

relatively small fraction of the processor, but the 

sophisticated infrastructure around it enables the processor 

to use them very efficiently on nearly arbitrary code and 

algorithms. 

In the middle are cores such as the the SPUs on a Cell/B.E., 

where each core has a complete instruction scheduler, but it 

is very simple with in-order execution and largely software-

controlled caching.  These require a significant amount of 

additional sophistication in the code to make full use of the 

processor capabilities, which limits dynamic responsiveness 

and adds to the amount of code to be executed, but the 

tradeoff is that a higher quantity of arithmetic logic can be 

provided for a given size and power.  Intel's Larrabee 

architecture fits into this category as well, as do Tilera's 

manycore processors. 

At the other end of the spectrum are GPUs, where a single 

instruction execution unit is shared across an array of cores, 

such that all of the cores execute the same instructions in 

synchrony.  This allows a very high proportion of the 

processor to be devoted to arithmetic logic, but this can 

only be effectively used for code and algorithms with 

appropriate parallelism.  Very-wide SIMD processors such 

as ClearSpeed’s CSX700 likewise fall into this category, 

with a high proportion of arithmetic logic units to 

instruction execution, and a resulting requirement for large 

amounts of fine-grained parallelism in the algorithms. 

The processors supported by Sourcery VSIPL++ that will 

be discussed in this presentation provide representative 

samples from each of these categories.  We will discuss 

results from a current Intel x86 multicore processor 

illustrating the high-instruction-scheduling end of the 

spectrum, an IBM Cell/B.E. processor illustrating the 

middle range, and an NVIDIA Tesla GPU illustrating the 

high-arithmetic SIMD end of the spectrum. 

Algorithms 

The operations covered in the VSIPL++ API fall into three 

major categories: elementwise and reduction operations, 

linear algebraic operations such as matrix multiplications 

and solvers, and signal-processing operations such as FFTs, 

convolutions, and FIR and IIR filters. 

Within these algorithms, there are a number of 

characteristics that affect the performance of the algorithm.  

The ratio of input elements to output elements range from 

reduction operators such as summation and averages where 

the output is a single element, to operations such as vector 

outer products where there are a large number of output 

elements for each input element. 

For operations where the input and output sizes are 

comparable, the number and distribution of the input 

elements required to compute each output element vary, 

from elementwise operations where an output element is 

computed from a single input element, to convolutions and 

FIR filters where a small contiguous range of input 

elements are involved, to matrix products where a matrix 

row and column are involved, and to FFTs and solvers 

where every input element is required in the computation of 

each output element. 

When operations involve inputs from multiple elements, 

they also differ in the structure of the cross-linking between 



computations.  Although FFTs require all of the input 

elements for computing each output element, the 

computations occur in a pattern of local computation and 

global communication, and this pattern is the same for each 

element; thus, although the communication can be costly, 

spreading the algorithm across parallel computing elements 

is relatively trivial.  Conversely, each element in an IIR 

filter requires the full results from each previous element in 

the sequence, and so the naive algorithm provides no 

opportunity for parallelism at all.  Many of the algebraic 

solver algorithms are in the middle of these extremes; early 

parts of the computation can be performed in parallel, but 

the data dependencies require the final portions of the 

algorithm to be performed more sequentially. 

Finally, the VSIPL++ API includes a number of operations 

computed on matrices viewed as sets of vectors, where the 

operation on each vector may involve complicated 

computation patterns, but each row (or column) of the 

matrix is independent.  An example of this is the FFTM 

operator, which performs FFTs on each row or column of a 

matrix.  This provides a second, more coarse-grained level 

of parallelism above any fine-grained parallelism in the 

underlying operation. 

Results 

In the presentation, we will show quantitative results for a 

number of different operations within the VSIPL++ API, 

over a range of significant data sizes.  Some preliminary 

qualitative examples follow. 

The elementwise arithmetic operations are trivially 

parallelizable, and one might expect the performance to be 

directly related to the amount of arithmetic processing 

available on the hardware – with the GPU and Cell 

processors showing a dramatic advantage.  This turns out 

not to be the case in practice, as the operations are so cheap 

that the cost is largely driven by memory access rather than 

arithmetic.  In particular, both the Cell and CUDA versions 

have a large-vector performance of only about a 2x-3x 

performance increase over a single-core x86 version.  

Differences between the two processors show up with 

shorter vectors – for a vector of 32k points, the Cell 

performance is somewhat lower than that of the x86, 

whereas the CUDA version achieves its full performance at 

around 1k-2k points. 

The importance of memory access shows up in matrix 

multiplication as well.  Matrix multiplication requires O(N) 

computations for each output element, and can be 

performed in a block manner so that many of those 

computations can read data from cache rather than main 

memory.  With the large register array on the Cell/B.E. 

SPUs, this makes a much more significant difference than it 

does with CUDA; we found that matrix-multiply 

computations are 3x-4x faster on the Cell/B.E over a range 

of sizes.  However, an 8-core x86 implementation makes a 

strong showing as well; the CUDA version is only 2x faster 

on complex data. 

The FFTM computations, meanwhile, appear to use the 

high floating-point execution speed of the Cell/B.E. and 

CUDA to much better advantage.  For cases with 1k- to 4k-

point FFTs (such that each FFT fits easily on the local store 

of a single Cell/B.E. SPU), the Cell/B.E. version obtains a 

speedup of 9x-15x over the x86 version, and the CUDA 

version obtains a similar 6x-18x speedup.   

Conclusions 

The most apparent conclusion from the preliminary results 

is that there is no clear universal winner among the 

available HPEC processor types.  Not only do the 

performance comparisons differ strongly across different 

operations, but in many cases the absolute performance is 

reasonably close – certainly less than the variation one 

might expect within a given processor family. 

As expected, we show significant differences in relative 

performance not only across different operations, but across 

different sizes of the same operation.  For smaller data 

sizes, the flexibility of the CPU cores is a clear benefit.  

Likewise, we can see that the non-CPU processors have a 

necessary granularity of parallelism to obtain good 

performance, and the requirement is much tighter on the 

GPU than on the Cell/B.E. 

The results given here show comparable numbers for 

Cell/B.E. and CUDA operations, and show that these 

almost always perform better than our x86 system.  We do 

not expect this trend to continue; at the time of this writing, 

the CUDA version of the Sourcery VSIPL++ library is not 

yet complete, and the functions that have been implemented 

are largely those that are well-suited to GPU computation.  

In the presentation, we anticipate showing results for 

operations where the x86 processor is a clear winner on a 

similarly large scale. 

These results also show that the performance of a given 

processor can be strongly influenced by considerations such 

as the memory bandwidth and (for coprocessors) the cost of 

initiating a computation on the coprocessor.  This adds 

further considerations to the question of selecting the 

optimal processor type. 

 


