
Adaptable and Efficient Variable Size Template Matching in CUDA
Nicholas Moore and Miriam Leeser

Department of Electrical and Computer Engineering
Northeastern University

Boston, MA
{nmoore,mel}@coe.neu.edu

Laurie Smith King
Department of Mathematics and Computer Science

College of the Holy Cross
Worcester, MA

lking@holycross.edu

Introduction
Increasingly flexible GPUs and the advent of GPGPU (Gen-
eral Purpose GPU) languages, such as Nvidia’s CUDA and
the OpenCL standard, offer potential peak performance that
far exceeds that of general purpose CPUs for a variety of
problems. However, architectural and programming restric-
tions often prevent programmers from achieving peak per-
formance. Even for problems that map well to current
GPGPU environments, it can be difficult to develop gen-
eral solutions that work well over a range of problem sizes.
Current GPGPU platforms offer best performance at spe-
cific execution configurations, usually involving multiples
of architecture and application specific values, with perfor-
mance dropping off rapidly for programs not conforming to
the ideal. Developing algorithm implementations and tech-
niques that are widely parameterizable remains a roadblock
to broader GPGPU adoption and the development of adapt-
able GPGPU libraries. It is not feasible for library develop-
ers to create collections of GPU kernels specific to particular
problem instances that cover all of the cases users may re-
quire for a single algorithm.

As a case study, we are developing a parameter-
ized CUDA implementation of a sliding-window two-
dimensional correlation-based template matching algo-
rithm. Our GPGPU implementation’s ability to handle large
template sizes and to adapt to variable input sizes is dis-
tinctive and is important for building adaptable GPGPU li-
braries.

Target Template Matching Algorithm
The template matching algorithm is based on Pearson’s cor-
relation, as discussed in previous work [1]. The particular
application uses multiple templates as well as a sliding win-
dow, which increases the tracking ability, but significantly
increases the computation: a correlation must be computed
for each template for each possible location of the template
within the region of interest (ROI). Pearson’s correlation,
represented by corr2() as it is in the MATLAB Image Pro-
cesssing Toolbox, is defined in Figure 1.

corr2(A,B)=

∑
M

∑
N(AMN−Ā)(BMN−B̄)√(∑

M

∑
N(AMN−Ā)

2
)(∑

M

∑
N(BMN−B̄)

2
)

Figure 1: Ā (B̄) is the matrix average of A (B)

Our data sets are from a real-world medical imaging appli-
cation and include widely varying template sizes, ranging
from 23-by-21 to 156-by-116 pixels. The number of tem-
plates varies between 10 and 14. The area by which each
template is allowed to move varies from 2 to 9 pixels hori-
zontally and 9 to 18 pixels vertically.

This forms a good case study since the data sets are created
by humans and not carefully selected to match GPU archi-
tecture sizes. Both the template size and shift area variation
make it difficult to assume general relationships between the
parameters, as is the case for building a general purpose li-
brary of GPU kernels.

Optimized use of shared memory in GPU kernel imple-
mentations is extremely important and has been well doc-
umented. However, the data sizes in our application make it
more difficult to leverage these memories. Most template-
based GPU kernels assume the image is too large for shared
memory, but assume a small and square template size that
easily fits into shared or constant memory. The size of the
templates in this case study prevents the storage of one com-
plete single precision floating-point template in constant or
shared memory. Likewise, the typical approach of tiling
the ROI and loading a subset of the image data into shared
memory will not work as the template sizes are too large
for storage in shared memory, let alone the extra space for a
corresponding ROI.

Numerator Kernel Implementation
The numerator of the corr2() function, which has been im-
plemented as a distinct kernel, is the focus of this abstract.
It is similar to non-separable convolution except for the sub-
traction of the frame data average from each value. This
average value, B̄, is dependent upon the current template
location, as are the values of BMN for any specific M and
N pair. This complicates the numerator calculation and pre-
vents significant reuse of the frame data contribution.

To address the data working set size problems discussed
above, we take advantage of the fact that the computation is
formed from two nested summations. The template is bro-
ken down into tiled subregions, with each subregion’s con-
tribution to the final summation computed independently. A
second step is required to add each part of the calculation
to the final value. The tiles are mapped to thread blocks
within a kernel launch. For the implementation to adapt to
arbitrary template sizes it must be able to handle template
sizes that are not multiples of any efficient tile size. This
scenario, shown in Figure 2, results in leftover template pix-
els not covered by the regular set of template tiles. Padding
the template is not possible as it affects the template aver-
age as well as the size of the underlying frame data and the
averages used to compute the similarity score for a given
template position.

By combining runtime compilation of kernels and sepa-
rate kernel launches we are able to introduce adaptability
and handle the edge cases while preserving the benefits
of compile-time optimization, such as loop unrolling and



strength reduction, which are important for performance on
GPUs. A main tile size is selected and mapped across the
template size associated with the current problem. Then, as
needed, separate kernels are compiled to handle the remain-
ing tiles.

Main Tiles
Right

Tiles

Bottom Tiles

Corner

Tiles

Figure 2: Different template tile regions.

Each tile writes output to a contiguous pitch-aligned loca-
tion, allowing for fully coalesced memory accesses in the
summation kernel.

Performance
To evaluate the performance of the numerator implementa-
tion, it was compared to an older untiled GPU implemen-
tation, presented previously [1], and a MATLAB numerator
implementation. All of the experiments were conducted on
a workstation with an Intel Core 2 Duo E8400 (3.00 GHz,
6MB L2 cache) and an Nvidia GeForce 8800 GTX running
Ubuntu 9.04 64-bit, CUDA 2.3, and MATLAB R2010a. The
untiled GPU version of the numerator does not use shared
memory and relies on texture memory to cache the template
data. For the tiled GPU kernel, arbitrary tile sizes of 16-by-4
(rows-by-columns), 8-by-8, and 4-by-4 were selected.

Numerator Runtime Comparison

1 2 3 4 5 6

Patient

1×102

1×103

1×104

1×105

1×106

R
u
n
ti

m
e
 (

m
s)

Optimized MATLAB
Untiled GPU
16x4 Main Tiles
8x8 Main Tiles
4x4 Tiles

Figure 3: Comparison of numerator runtimes.

The execution times of the numerator implementations are
shown in Figure 3. These results do not include data transfer
to the GPU, as the numerator is one step in the process of
calculating Pearson’s correlation. The tiled template imple-
mentation provides significant performance improvements
over the untiled GPU implementation, especially for larger
template sizes. This can be seen in Table 1. However, the
tiled template actually results in slow down for the second
patient. This is due to the use of the smallest template size
among the data sets. The small template size does not gen-
erate enough tiles, and therefore thread blocks, to keep all
of the GPU’s streaming multiprocessors occupied.

The untiled GPU implementation uses a single launch to
process a single template applied to all of the frames at
once. This works well for the large static data sets provided
for testing, but is not a workable solution for processing a

stream of images. The tiled GPU kernel processes one frame
at a time and each template is independently processed, al-
lowing for streaming an indeterminate number of frames.
For the tiled version, the smaller tile size of 4-by-4 gener-
ates more blocks, but places more pressure on the memory
hierarchy. This provides some benefit for the smallest tem-
plate size associated with the second patient, but not for the
other patients.

Main Tile Size

Patient 16×4 8×8 4×4

1 14.89 12.82 11.81

2 0.78 0.66 0.83

3 9.43 9.13 9.30

4 16.23 13.42 9.40

5 25.73 24.80 18.30

6 13.03 12.67 7.98

Table 1: Speedups of the tiled numerator kernel
over the untiled kernel for various main tile sizes.

Figure 4, displays the runtime breakdown for each region of
the template tiles and the final summation. Note that, when
present, the edge tile kernels often take roughly the same
time to execute as each other. This is a result of each ker-
nel launch containing fewer blocks than there are streaming
multiprocessors on the GPU. The block execution latency
determines the kernel launch execution time.

16x4 Tile Average Execution Times

1 2 3 4 5 6

Patient

0

0.1

0.2

0.3

0.4

0.5

E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Final Summation
Corner Sums
Right Sums
Bottom Sums
Main Sums

Figure 4: Plot of the contribution of each tile region
to the processing of a frame and template pair.

Using separate GPU kernel executions is somewhat inef-
ficient on current GPUs that only execute one kernel at a
time, but may work well on upcoming devices that can ex-
ecute multiple kernels simultaneously, like Nvidia’s Fermi
GPUs. Breaking the calculation into more kernel calls gen-
erates more total blocks and will allow better scheduling of
these blocks on GPU platforms supporting concurrent exe-
cution.

Acknowledgments
The authors would like to thank The MathWorks for sup-
porting this research.

References
[1] Nicholas Moore and Miriam Leeser. Accelerating a MAT-

LAB application with Nvidia GPUs: a case study for GPU
library construction. In High Performance Embedded Comput-
ing Workshop 2009, Lexington, MA, USA, 2009. MIT Lincoln
Laboratory.


