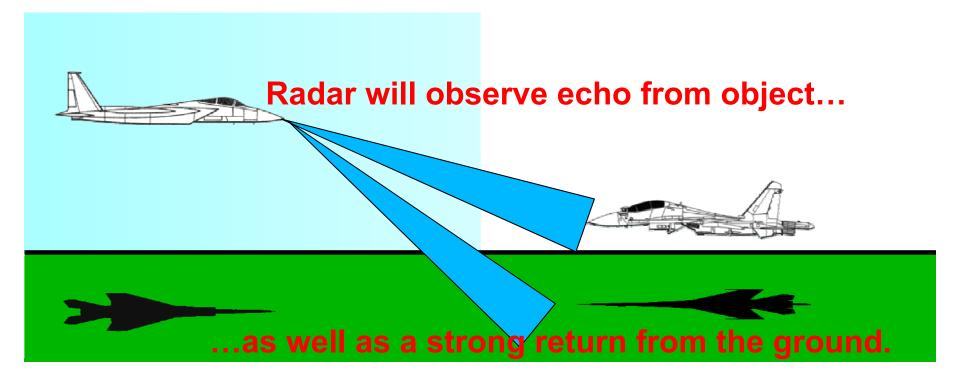
23 September 2010

Using GPU VSIPL & CUDA to Accelerate RF Clutter Simulation

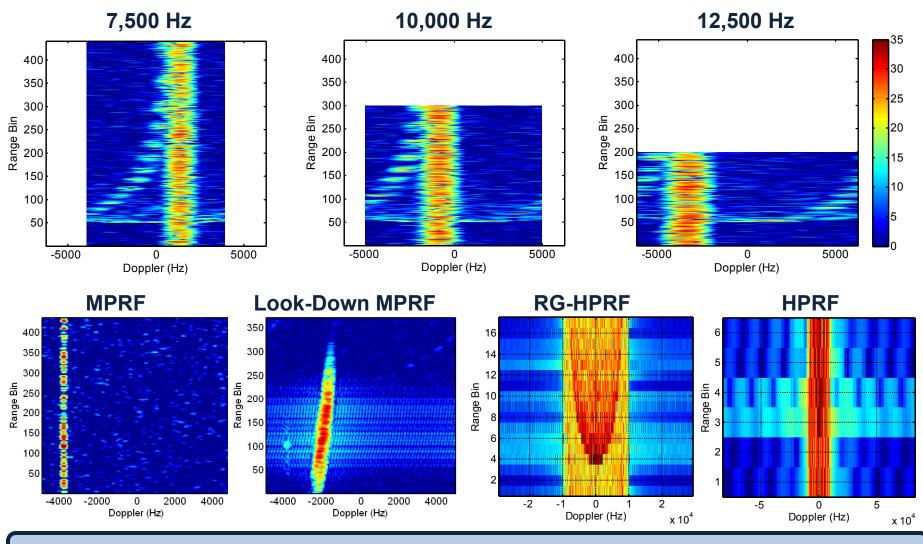
2010 High Performance Embedded Computing Workshop

Dan Campbell, Mark McCans, Mike Davis, Mike Brinkmann dan.campbell@gtri.gatech.edu



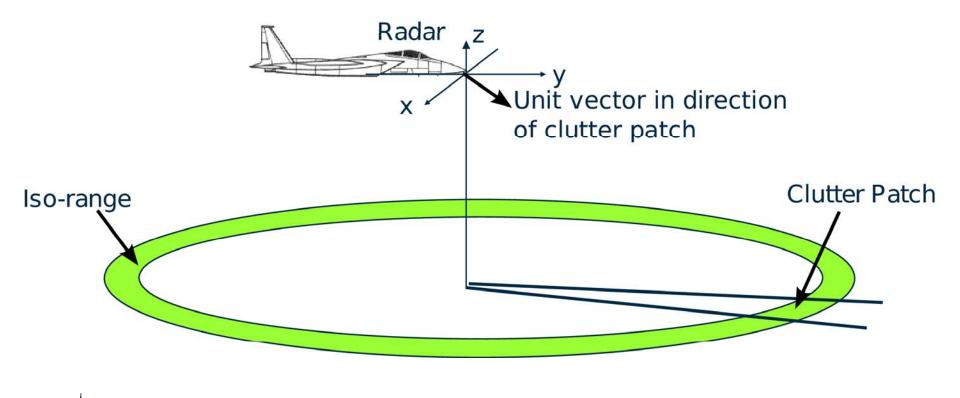
ECRB - HPC - 1

- RF Clutter Simulation
- Validation Approach
- > GPU VSIPL
- > Precision Issues
- >VSIPL Port, Optimization, and Results

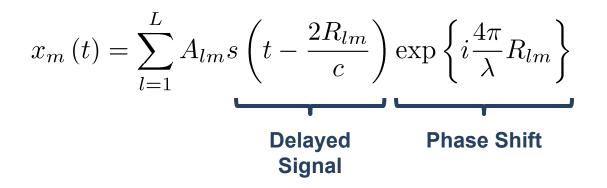

- **> RF Clutter Simulation**
- Validation Approach
- > GPU VSIPL
- > Precision Issues
- >VSIPL Port, Optimization, and Results

Radar Clutter

Strong returns from the ground, called "clutter", often limit the performance of radars in air-to-air and air-to-ground operations.


Synthetic Air-to-Air Clutter

Targets at same range/Doppler as clutter will be obscured.


Tech || Institute

Approach: Sub-divide ground into number of unresolvable clutter patches and compute contribution of each.

Georaia

Tech ||| Institute

Symbol	Description
$x_{m}\left(t ight)$	Clutter data for pulse m
$s\left(t ight)$	Complex baseband radar waveform
A_{lm}	SNR of clutter patch l for pulse m
R_{lm}	Range from radar to clutter patch l for pulse m
c	Speed of wave propagation
λ	Radar wavelength

Radar clutter data is sum of delayed and phase shifted versions of radar waveform.

Notional Parameters

	Air-to-Air	SAR Imaging (Air-to-Ground)	Our Test
# of Range Bins	200	1750	500
# of Pulses	128	3000	8
# of Clutter Patches	6,800 Rng x 96 Az = 6.5 x 10 ⁵	14,500 Rng x 26,812 Az = 3.8 x 10 ⁸	566 rng x 52 az = 29,432

Computational load depends on radar parameters and collection geometry (e.g., high resolution scenarios require a large number of independent clutter patches)

Institute

iech

Algorithm:

Inputs

- Radar Parameters (waveform, antenna, etc.)
- Location of platform for each pulse

Output

• Simulated radar data cube (sample voltage for each pulse, each channel, and each range bin)

For each pulse and for each range bin...

For each clutter patch in this range ring...

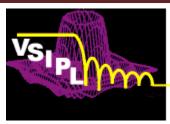
- 1. Compute range, azimuth, and elevation from platform to clutter patch.
- 2. Scale contribution of this clutter patch according to the radar range equation.
- 3. Accumulate the contribution of this clutter patch to the simulated data cube.

RF Clutter Simulation

- Validation Approach
- > GPU VSIPL
- > Precision Issues

>VSIPL Port, Optimization, and Results

Validation Needs


- Porting MATLAB
 C introduces changes
 - Random Number Generator
 - Double → Single
 - Implementation of some functions *e.g.* transcendentals
 - Reordering of operations
 - Programmer Error
- Identical output too costly
- Derive acceptance criteria from expected usage needs

Validation Approach

- Modify sim to capture RNG stream from MATLAB
- Automate large number of runs for golden data
- Accelerated port optionally ingests RNG stream
- Capture port output and compare to golden data
- Acceptance Criteria:
 - $CNR\Delta = (CNR_M CNR_T) / CNR_M < 10^{-4}$
 - ECR = 20 log10(norm(M(:) T(:)) / norm(M(:))) < -60dB
 - ADMSE = Mean($| fft2(M(:)) fft2(T(:)) |^2) < 10^{-3}$

- RF Clutter Simulation
- Validation Approach
- ➢ GPU VSIPL
- > Precision Issues
- >VSIPL Port, Optimization, and Results

GPU VSIPL

lech |/| Institute

Vector Signal Image Processing Library

The Open Industry Standard For Signal Processing

- http://www.vsipl.org
- Industry standard C API for *portable* dense linear algebra & signal processing
 - Also C++, Python
- Accelerated implementations for many platforms, primarily embedded, coprocessor-based systems
- GPUVSIPL VSIPL implementation that exploits Graphics Processing Units to accelerate VSIPL applications – developed at GTRI
 - http://gpu-vsipl.gtri.gatech.edu

> RF Clutter Simulation
 > Validation Approach
 > GPU VSIPL
 > Precision Issues

VSIPL Port, Optimization, and Results

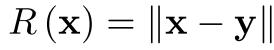
Original Validation Results

***** VSIPL versions compared to MATLAB version

	VSIPL Double	VSIPL Single	Threshold
CNR Consistent	Yes	Yes	
$CNR \Delta$	10 ⁻¹⁶	10 ^{- 6}	< 10 ⁻⁴
ECR	-152 dB	2.9 dB	< -60 dB
ADMSE	10 ⁻¹²	10 ⁴	< 10 ⁻³

Single Precision

Single precision errors caused by high dynamic range in platform to clutter patch range calculation:


\$ d(Platform >>> d(clutter patch >clutter patch)

Solution: use far-field approximation technique

- Double precision used to compute a base range
- Single precision for sets of ΔR values
- Small number of double precision calculations has negligible affect on performance

Far Field Approx. via Taylor Expansion

Range between platform at x and clutter patch at y

Linear approximation near x₀

$$R(\mathbf{x}) \approx R(\mathbf{x}_0) + \left(\frac{\mathbf{x}_0}{\|\mathbf{x}_0\|}\right)$$

Unit vector from Distance
CPI center to from center
clutter patch of scene,
$$\mathcal{E}$$

 $\left(\frac{\mathbf{x}_0 - \mathbf{y}}{\|\mathbf{x}_0 - \mathbf{y}\|}\right) \cdot \left(\mathbf{X} - \mathbf{X}_0\right)$

Dietanco

Distance travelled in direction orthogonal to "lines" of constant range

$$\frac{\text{Quadratic Term}}{\frac{1}{2} \left[\frac{\|\boldsymbol{\epsilon}\|^2}{\|\mathbf{x}_0 - \mathbf{y}\|} - \left(\boldsymbol{\epsilon} \cdot \frac{\mathbf{x}_0 - \mathbf{y}}{\|\mathbf{x}_0 - \mathbf{y}\|} \right)^2 \right] \approx 0 \text{ for } \|\boldsymbol{\epsilon}\| << \|\mathbf{x}_0 - \mathbf{y}\|$$

$$\text{Georgia} \text{Research}$$

Bounding Error

Approximation Error

$$R\left(\mathbf{x_0} + \epsilon\right) - \hat{R}\left(\mathbf{x_0} + \epsilon\right) \le \frac{1}{2} \frac{\|\epsilon\|^2}{\|\mathbf{x}_0 - \mathbf{y}\|}$$

Case 1: Air-to-Air

128 pulses, 20 kHz PRF, 300 m/s velocity $\rightarrow \|\epsilon\| < 1m$ 10 km Altitude $\rightarrow \|\mathbf{x}_0 - \mathbf{y}\| < 10 \text{km}$

error < 50 μ m < 0.06° phase at X band

Case 2: SAR

Georgia

Tech || Institute

10 second dwell, 100 m/s velocity $\rightarrow ||\epsilon|| < 500 \text{m}$ 10 km Altitude $\rightarrow ||\mathbf{x}_0 - \mathbf{y}|| < 10 \text{km}$

error < 12.5 m >> λ at X band!!!

Linear approximation to range may be appropriate for typical air-to-air scenarios.

Validation Results

Comparison to original MATLAB version

Approximation technique used in each version listed

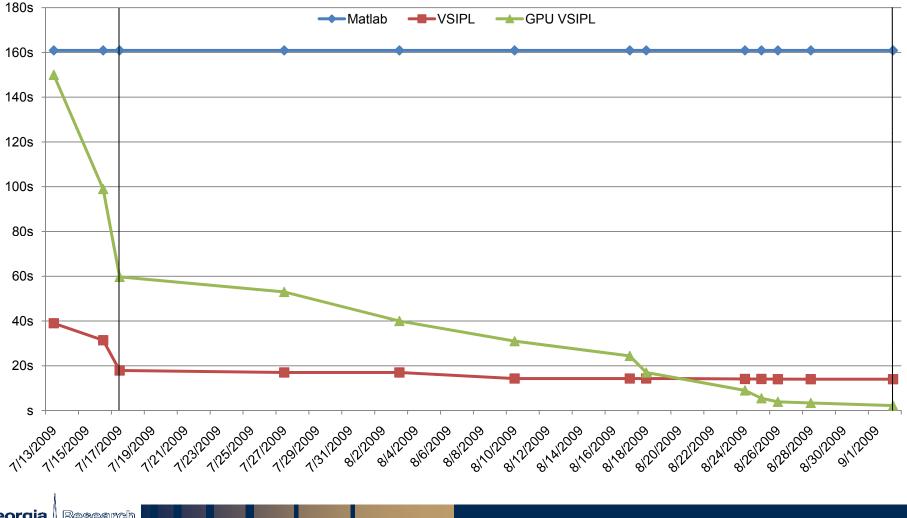
	MATLAB Single	VSIPL Double	VSIPL Single	Threshold
CNR Consistent	Yes	Yes	Yes	
	10 -7	10 ^{- 14}	10 ^{- 5}	< 10 ⁻⁴
ECR	-101 dB	-130 dB	-98 dB	< -60 dB
ADMSE	10 ^{- 7}	10 ^{- 10}	10 ^{- 6}	< 10 ⁻³

- >RF Clutter Simulation
- Validation Approach
- ➢ GPU VSIPL
- > Precision Issues

> VSIPL Port, Optimization, and Results

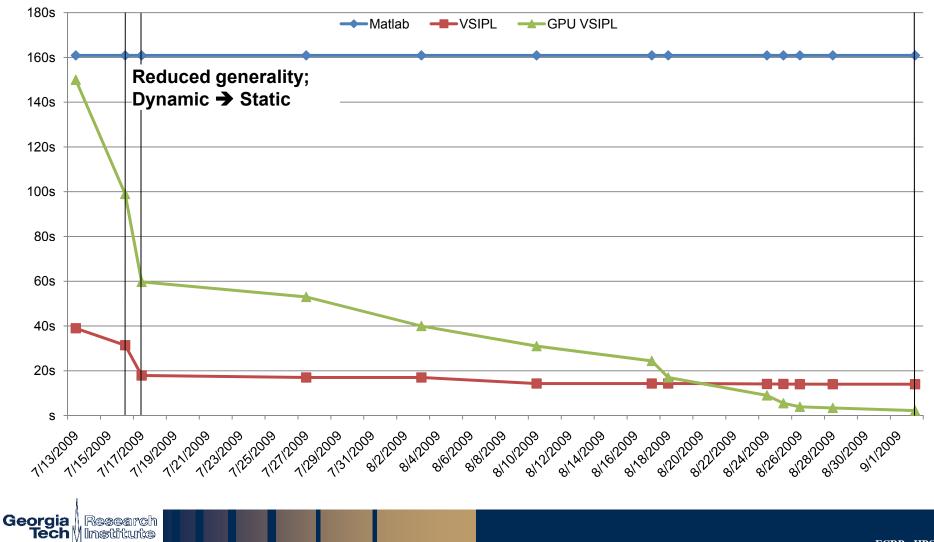
VSIPL PORT

- MATLAB to VSIPL port made easier due to VSIPL functions that emulate MATLAB operations
- Original MATLAB code very complex, particularly for radar novice
 - First pass of the port was done with almost no attempts at optimizations
- GPU transition required some additional changes
 - Single vs Double precision issues
 - Time cost of operations differ TASP ←→ GPU
- VSIPL needs "sample" function

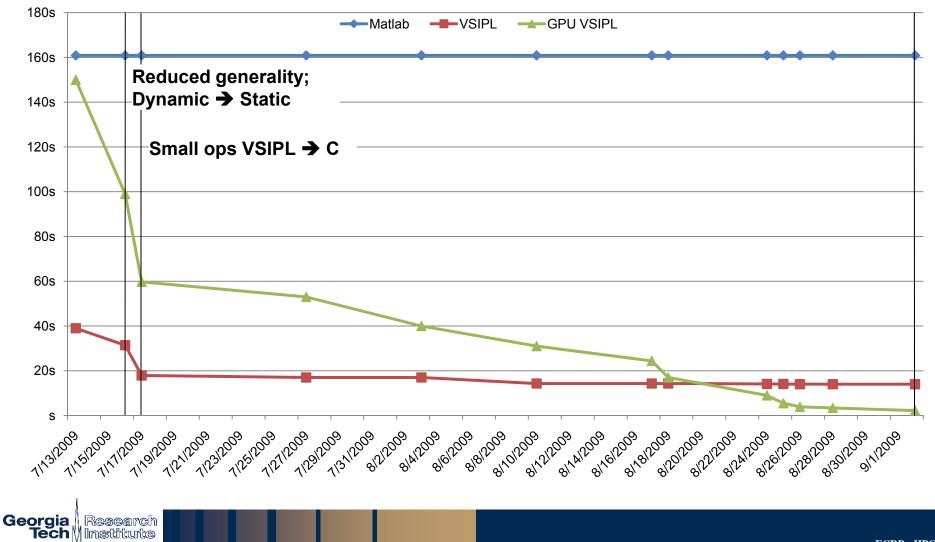

Optimization Issues

- MATLAB code written for readability over speed
 - Too many nested loops, operations involving small datasets
 - Many redundant calculations
- Original code was very flexible, due to large user base
 - Most optimizations required removing some generality
 - Assumptions need to be made about the scenario

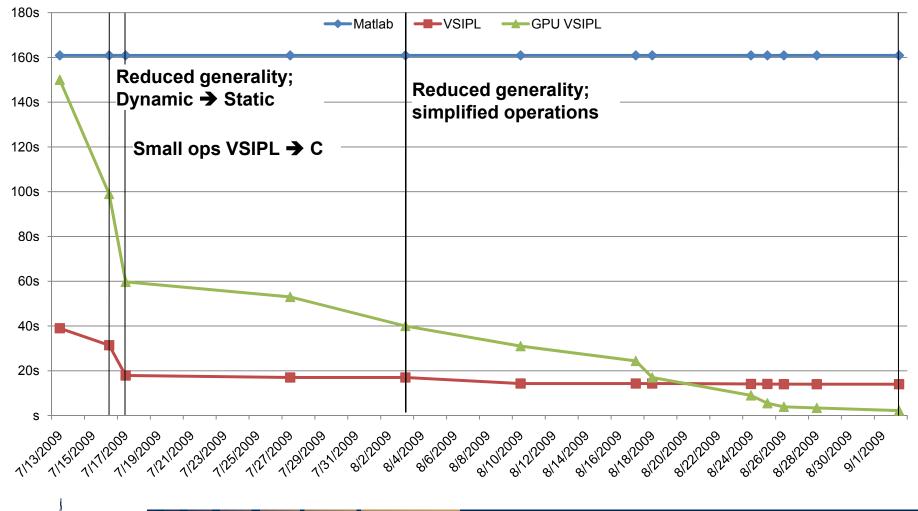
Abstraction barrier issues

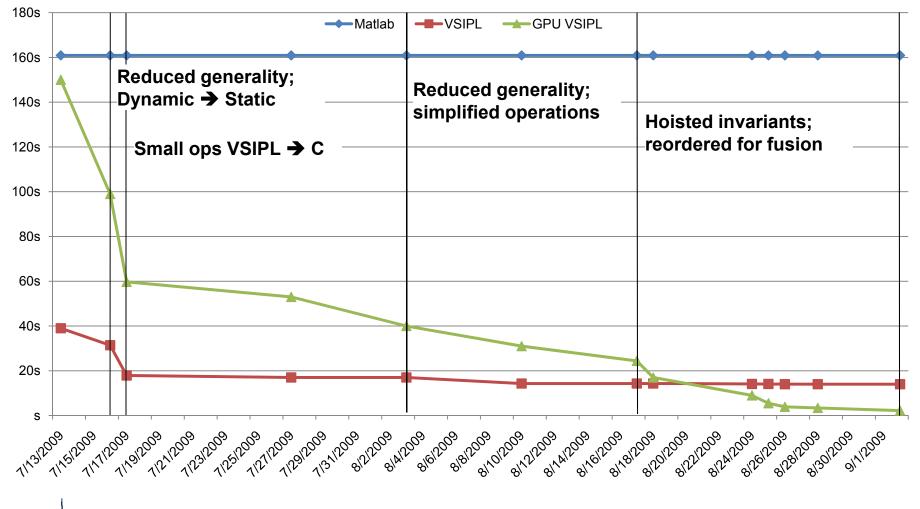

- Small operations less costly on CPU than GPU
- Operation fusion, coarser operations, and leaving small things in C each helped

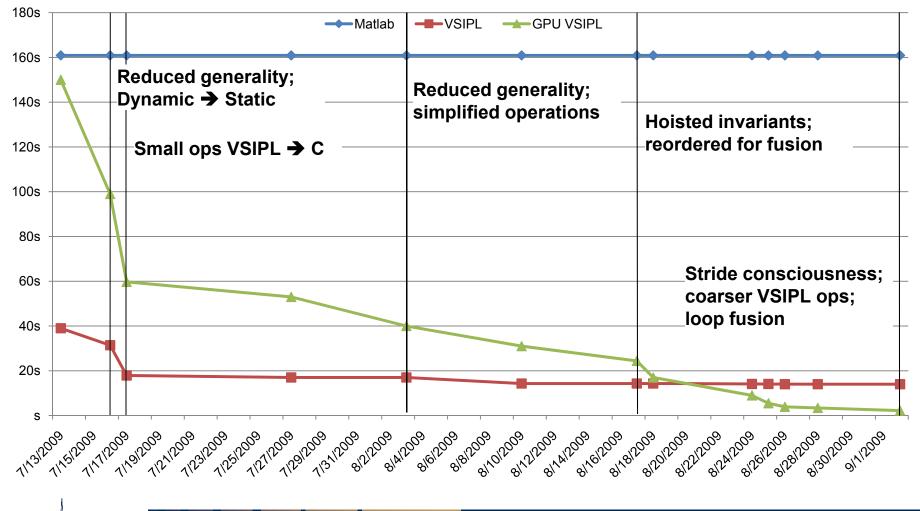
Optimization progression of single precision VSIPL:



Georgia Research


Optimization progression of single precision VSIPL:


Optimization progression of single precision VSIPL:


***** Optimization progression of single precision VSIPL:

***** Optimization progression of single precision VSIPL:

Optimization progression of single precision VSIPL:

Georgia Research

***** Performance Timing Results:

Version	Runtime(s)	Speedup
MATLAB	162.5	1x
TASP VSIPL Double	20.9	7.8x
TASP VSIPL Single	14.0	11.6x
GPU VSIPL Single	2.2	73.8x
CUDA Native	1.3	125x

GTX 480/Q6600 TASP single core only