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I. I NTRODUCTION

Architecturally diverse systems comprised of any variety
and number of processing elements (multicore processors,
FPGAs, GPUs, etc.) have become common in high perfor-
mance computing. Each of these architectures presents its own
programming challenges and complexities. Each often has its
own programming language, development environment, and
processing constraints. MIT Lincoln Laboratory developedthe
Parallel Vector Tile Optimizing Library (PVTOL) as a means
of writing high-performance signal and image processing code
that is portable across a large number of multicore general
purpose computing architectures [1]. This work extends the
PVTOL Tasks and Conduits framework to include support for
Graphics Processing Units (GPUs), alleviating the difficulty
of interfacing with different GPU architectures and easing
the creation of portable applications. The PVTOL Tasks and
Conduits API provides a consistent, portable programming
model that hides the complexity of the underlying processor
configuration and memory hierarchies as well as supporting
both task and data parallelism.Tasks are hierarchical, modular
abstractions for data processing that contain single program
multiple data (SPMD) code that can execute on one or more
processing units.Conduits synchronize and transfer data be-
tween tasks. With this framework, it is easy for a programmer
to construct an application pipeline; a simple example is de-
picted in Figure1. We have extended the PVTOL framework to
include graphics processing units [2], making use of NVIDIA’s
Compute Unified Device Architecture (CUDA).

Fig. 1. Structure of a simple PVTOL pipeline application.

II. GPU TASKS AND CONDUITS

Recently, there has been a proliferation of GPUs as co-
processors for accelerating computationally intensive applica-
tions. Extending the PVTOL Tasks and Conduits framework

to include these devices allows programmers to exploit the
processing power of GPUs in their applications with minimal
effort. A version of Tasks and Conduits for GPU coprocessors
has been developed to provide abstractions for intelligently
allocating memory, transferring data between the host and
device, and executing kernels. Support for GPUs is seamlessly
integrated with existing PVTOL Task and Conduit API using
the Compute Unified Device Architecture (CUDA). Swapping
the DAT Task and connected Conduits shown in Figure1 with
a GPU Task and GPU Conduits, the DAT will execute it’s
core computation on a GPU device. The code for each Task
runs as a separate host thread, and follows the same rules
of modularity and independence as regular PVTOL Tasks.
The GPU Task maintains the same API as a regular PVTOL
Task, and has similar responsibilities. They are responsible
for querying their conduits to obtain access to data buffers,
for setting up kernel parameters, and for initiating execution
of kernels on the device.

The host Tasks and GPU Tasks communicate via GPU
Conduits, which manage data buffers in the host’s shared
memory and the GPU’s global memory. Conduits are also
responsible for the synchronization of access to those buffers.
PVTOL GPU Conduits execute their functionality on the GPU
co-processor by interfacing with the NVIDIA CUDA Runtime
API through a set of GPU Utility functions and can handle any
data type or size in up to three dimensions. The GPU Utility
functions provide means for initializing the GPU, allocating
data, moving data, checking parameters, and executing kernels.
The primary goal of GPU Conduits is to isolate all platform
dependent code, allowing all versions of PVTOL Tasks and
Conduits to maintain the same API and remain completely
portable. The GPU Utility functions take in parameters related
to the dimensions, type, and location of the data and configure
the appropriate arguments for function calls to the CUDA API.
These utility functions perform parameter checking to ensure
operations the user wants to perform are supported by the
hardware; error checking to ensure that the operations execute
on the hardware without errors; and interfacing to platform-
dependent third-party libraries such as CUFFT and CUBLAS.
GPU Conduits perform the exact same forms of data storage,
movement, and synchronization as regular PVTOL Conduits,
but with one set of buffers located on the host and another
located on the GPU device. Currently, GPU Conduits exist
for the following modes of communication:



• Host⇒ GPU
• GPU⇒ Host
• GPU1⇒ Host⇒ GPU2
• GPU1⇒ GPU1 (shared buffer)

The extension of the PVTOL Task and Conduit framework
to include GPUs successfully abstracts the interaction anduse
of GPU coprocessors from the user. The code that the user
writes to interact with the GPU is limited to the kernels that
run on the GPU; such kernels are frequently available from
third parties. The extension of PVTOL to include GPUs further
realizes the goal of providing a portable, easy to program
abstraction of the underlying hardware for high-performance
computing applications.

III. F LUORESCENCEMEDIATED TOMOGRAPHY

We have used PVTOL for applying Monte Carlo methods
in Fluorescence Mediated Tomography. FMT is emerging as
an important molecular imaging modality which, in contrastto
simple planar imaging, allows visualization of 3-dimensional
distributions of fluorophores in live animals non-invasively.
Combined with fluorescent probes directed to specific molec-
ular targets, FMT has important potential applications in,for
example, studying disease development in small animals, novel
drug discovery, and monitoring molecular responses of disease
to novel therapeutics [3]. Like many other medical imaging
techniques, FMT consists of a forward problem, accurately
modeling light propagation from source to detector through
the medium being studied; as well as an inverse problem,
solving the system of equations from the forward problem to
reconstruct the final image. Major challenges in FMT are the
high degree of light scatter through biological tissue which
limits the potential imaging resolution of the technique [4],
as well as the large amount of computation required for both
the forward and inverse problems. Monte Carlo methods for
computing the photon propagation in biological tissue yield
accurate results with few, if any, assumptions [5]. We have
chosen this algorithm to include in a prototype application
utilizing PVTOL and extending it to GPU Tasks and Conduits
for performance improvement.

Fig. 2. PVTOL FMT Application pipeline

We have developed a C version of the FMT algorithm based
off the MCML software package [5]. A PVTOL Tasks and
Conduits application, shown in Figure2 has been developed.
In addition, a NVIDIA CUDA version of the algorithm was
developed so that the DAT Task will run either the C or

CUDA version of the algorithm. Our CUDA implementation
has 512 threads arranged into a single thread block. The
algorithms track photon propagation between a single source
to a single detector. Once the pipeline is constructed, porting
the application from the C version to the CUDA version only
requires a change of 12 SLOC.

IV. EXPERIMENTAL RESULTS

We simulated photon propagation of10M photons, with the
source and detector separated by0.5cm of diffusive media,
with optical properties matching those of biological tissue. Re-
gardless of the time it takes a photon packet to travel through
the media from source to detector, the two implementations
provide nearly identical results, confirming the accuracy of our
new GPU-based time-domain Monte Carlo algorithm. Figure
3 shows overall performance results for simulating10

7 photon
packets propagating from source to detector through the media.
These are end-to-end results, including all initialization, data
transfer, file I/O operations, as well as core computation. Our
complete GPU implementation demonstrated a speedup of
6.777x versus the complete C implementation.

Execution Time Speedup
C 1:01 (hr:min) 1.000x

CUDA 0:09 (hr:min) 6.777x

Fig. 3. Performance statistics for simulating10
7 photon packets propagating

through 0.5 cm of turbid media.

V. FUTURE DIRECTIONS

The CUDA version of the Monte Carlo algorithm is cur-
rently unoptimized. We expect to achieve even more pro-
nounced speedups. In addition, we are developing a version
that processes photons from multiple detectors. For GPU
PVTOL, we are investigating adding direct GPU to GPU
communication to our conduits.
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