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. INTRODUCTION to include these devices allows programmers to exploit the

Architecturally diverse systems comprised of any Varie@,rocessing power of GPUs in their a_pplications with minimal
and number of processing elements (multicore process(ﬁgprt.Aversmn of Tasks and _Condmts for GPU COprocessors
FPGAs, GPUs, etc.) have become common in high perf(ﬂas be_en developed to proylde abstractions for intelllgent
mance computing. Each of these architectures presentsiits ¢llocating memory, transferring data between the host and
programming challenges and complexities. Each often lsas €Vice, and executing kernels. Support for GPUs is sealyless
own programming language, development environment, afftiegrated with existing PVTOL Tgsk and Conduit API using
processing constraints. MIT Lincoln Laboratory develofreel the Compute Unified Device Architecture (CUDA). Swapping
Parallel Vector Tile Optimizing Library (PVTOL) as a meanghe DAT Task and connected Conduits shown in Figureth
of writing high-performance signal and image processingeco@ GPU Task and GPU Conduits, the DAT will execute it's
that is portable across a large number of multicore genefQré computation on a GPU device. The code for each Task
purpose computing architectures [1]. This work extends NS @s a separate host thread, and follows the same rules
PVTOL Tasks and Conduits framework to include support f& modularity and independence as regular PVTOL Tasks.
Graphics Processing Units (GPUs), alleviating the difficul The GPU Task maintains the same AP as a regular PVTOL
of interfacing with different GPU architectures and easinFSkv and has similar responsibilities. They are respémsib
the creation of portable applications. The PVTOL Tasks af@if querying their conduits to obtain access to data buffers
Conduits API provides a consistent, portable programmir@f Setting up kernel parameters, and for initiating exieut
model that hides the complexity of the underlying process8f kernels on the device. _ _
configuration and memory hierarchies as well as supporting! N€ host Tasks and GPU Tasks communicate via GPU
both task and data parallelisifasks are hierarchical, modular €Onduits, which manage data buffers in the host's shared
abstractions for data processing that contain single progrmeémory and the GPU's global memory. Conduits are also
multiple data (SPMD) code that can execute on one or mdigSPonsible for the synchronization of access to thoseetmuff
processing unitsConduits synchronize and transfer data bePVTOL GPU Conduits execute their functionality on the GPU
tween tasks. With this framework, it is easy for a programmgp-Processor by interfacing with the NVIDIA CUDA Runtime
to construct an application pipeline; a simple example is d8P! through a set of GPU Utility functions and can handle any
picted in Figurel. We have extended the PVTOL framework t¢lata type or size in up to three dimensions. The GPU Utility
include graphics processing units [2], making use of NVIBIA functions provide means for initializing the GPU, allocati

Compute Unified Device Architecture (CUDA). data, moving data, checking parameters, qnd executingleern
The primary goal of GPU Conduits is to isolate all platform

dependent code, allowing all versions of PVTOL Tasks and
Conduits to maintain the same API and remain completely
portable. The GPU Utility functions take in parameterstesla
DIT DOT to the dimensions, type, and location of the data and corfigur
the appropriate arguments for function calls to the CUDA API
These utility functions perform parameter checking to easu
operations the user wants to perform are supported by the
hardware; error checking to ensure that the operationsuéxec
Fig. 1. Structure of a simple PVTOL pipeline application. on the hardware without errors; and interfacing to platform
dependent third-party libraries such as CUFFT and CUBLAS.
GPU Conduits perform the exact same forms of data storage,
movement, and synchronization as regular PVTOL Conduits,

Recently, there has been a proliferation of GPUs as dodt with one set of buffers located on the host and another
processors for accelerating computationally intensiy@liep- located on the GPU device. Currently, GPU Conduits exist
tions. Extending the PVTOL Tasks and Conduits framewofkr the following modes of communication:

II. GPU TAsSKkS AND CONDUITS



e Host= GPU CUDA version of the algorithm. Our CUDA implementation

o« GPU= Host has 512 threads arranged into a single thread block. The
o« GPUl= Host= GPU2 algorithms track photon propagation between a single sourc
o« GPUl= GPUL1 (shared buffer) to a single detector. Once the pipeline is constructedjmaprt

The extension of the PVTOL Task and Conduit frameworife application from the C version to the CUDA version only
to include GPUs successfully abstracts the interactionsed requires a change of 12 SLOC.
of GPU coprocessors from the user. The code that the user IV. EXPERIMENTAL RESULTS
writes to interact with the GPU is limited to the kernels that ) ) )
run on the GPU; such kernels are frequently available from W& Simulated photon propagation M photons, with the
third parties. The extension of PVTOL to include GPUs furth&0Urce and detector separated bjem of diffusive media,

realizes the goal of providing a portable, easy to prograWith optical prop_ertie_s matching those of biological tissRe-
abstraction of the underlying hardware for high-perforoean gardless of the time it takes a photon packet to travel throug
computing applications. the media from source to detector, the two implementations

provide nearly identical results, confirming the accurafcyur
[1l. FLUORESCENCEMEDIATED TOMOGRAPHY new GPU-based time-domain Monte Carlo algorithm. Figure
We have used PVTOL for applying Monte Carlo methodd shows overall performance results for simulatifij photon
in Fluorescence Mediated Tomography. FMT is emerging 88ckets propagating from source to detector through theamed
an important molecular imaging modality which, in contrimst These are end-to-end results, including all initializatidata
simple planar imaging, allows visualization of 3-dimemsib transfer, file I/O operations, as well as core computatiam. O
distributions of fluorophores in live animals non-invagjive complete GPU implementation demonstrated a speedup of
Combined with fluorescent probes directed to specific mole@-777x versus the complete C implementation.
ular targets, FMT has important potential applicationsfan,

example, studying disease developmentin small animaiglno Execution Ti_me Speedup
drug discovery, and monitoring molecular responses ofdise C 1:01 (hr:min) 1.000x
to novel therapeutics [3]. Like many other medical imaging CUDA | 0:09 (hrrmin) | 6.777x

teChniques_v FMT consis_ts of a forward problem, accuratelyy 3. performance statistics for simulating” photon packets propagating
modeling light propagation from source to detector throughrough 0.5 cm of turbid media.

the medium being studied; as well as an inverse problem,
solving the system of equations from the forward problem to
reconstruct the final image. Major challenges in FMT are the ) ) )
high degree of light scatter through biological tissue whic The CUDA version of the Monte Carlo algorithm is cur-
limits the potential imaging resolution of the techniqug, [4€ntly unoptimized. We expect to achieve even more pro-
as well as the large amount of computation required for bopunced speedups. In addition, we are developing a version
the forward and inverse problems. Monte Carlo methods fBfat Processes photons from multiple detectors. For GPU
computing the photon propagation in biological tissue ¢/ielPVTOL, we are investigating adding direct GPU to GPU
accurate results with few, if any, assumptions [5]. We hag@mmunication to our conduits.

chosen this algorithm to include in a prototype application VI. ACKNOWLEDGEMENTS
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