
CRBLASTER: Benchmarking a
Cosmic-Ray Rejection Application

on the Tilera 64-core TILE64
Processor

Kenneth John Mighell
mighell at noao dot edu

National Optical Astronomy Observatory
950 North Cherry Avenue, Tucson, AZ 85719

Abstract

While the writing of parallel-processing codes is, in
general, a challenging task that often requires complicated
choreography of interprocessor communications, the
writing of parallel-processing image-analysis codes based
on embarrassingly-parallel algorithms can be a much easier
task to accomplish due to the limited need for
communication between compute processes. I describe the
design, implementation, and performance of a portable
parallel-processing image-analysis application, called
CRBLASTER, which does cosmic-ray rejection of CCD
(charge-coupled device) images using the embarrassingly-
parallel L.A.COSMIC algorithm. CRBLASTER is written
in C using the high-performance computing industry stan-
dard Message Passing Interface (MPI) library. A detailed
analysis is presented of the performance of CRBLASTER
using between 1 and 57 processors on a low-power Tilera
700-MHz 64-core TILE64 processor. The code has been
designed to be used by others as a parallel-processing
computational framework that enables the easy
development of other parallel-processing image-analysis
programs based on embarrassingly-parallel algorithms.

Introduction

One reason for the shortage of state-of-the-art parallel-
processing astrophysical image-analysis codes is that the
writing of parallel codes is perceived to be difficult. When
writing parallel-processing software, a programmer must
learn to deal with challenges associated with the chore-
ography of multiple processes which typically can have
complex interaction rules and requirements. Some of these
interactions can cause problems never encountered with
serial-processing software. Professional-grade parallel-
processing debugging software tools are complex and
sophisticated because they must detect these and other
dynamic programming errors in real time; not surprisingly,
these tools can easily cost many thousands of dollars for a
single-user license.

Programming algorithms can be classified as being
“embarrassingly parallel” if they have computational work
loads that can be divided into a number of (nearly)
independent parts that are executed on separate processes;
each compute process does its work independently with no
(or little) communication between the other compute
processes [1].

Embarrassingly-parallel image analysis of a single image
requires that the input image be segmented (partitioned) for
processing by separate compute processes. Figure 1 shows
a simple way that one may segment an image into 3 sub-
images for processing by embarrassingly-parallel algorithm
on 3 compute processes. Segmenting the image over rows
instead of columns would be logically equivalent.

Figure 1: A simple way to segment an image into 3 subimages

for an embarrassingly parallel algorithm.

Many low-level image processing operations involve only
local data with very limited (if any) communication
between areas (regions) of interest. Simple image proc-
essing tasks such as shifting, scaling, and rotation are ideal
candidates for embarrassingly-parallel computations.

During the conversion of a traditional sequential (single-
process) image-analysis program to an embarrassingly-
parallel program, one must carefully consider edge effects
where additional data beyond the edges of a particular
image partition may be required in order to do a proper
computation of the algorithm. In order to qualify as an
embarrassingly-parallel computation, one tries to avoid
interprocess communication between compute processes
whenever possible; this make the parallel-processing
program much easier to write and possibly faster to execute.
Astrophysical image-analysis programs are potential cand-
idates for embarrassingly-parallel computation if the
analysis of one subimage does not affect the analysis of
another subimage.

L.A.COSMIC Algorithm
The L.A.COSMIC algorithm for cosmic-ray rejection is
based on a variation of Laplacian edge detection; it iden-
tifies cosmic rays of arbitrary shapes and sizes by the
sharpness of their edges and can reliably discriminate
between poorly undersampled point sources and cosmic
rays. The L.A.COSMIC algorithm is described in detail in
reference [2] and is and is briefly outlined in Figure 2 (grey
rectangles). The process is iterative and typically requires 4
iterations for the optimal removal of cosmic rays from
Hubble Space Telescope Wide-Field Planetary Camera 2
(WFPC2) observations. Van Dokkum's IRAF script for
cosmic-ray rejection in images, lacos_im.cl, is robust and
requires very few user-defined parameters. Although
lacos_im.cl does an excellent job in removing cosmic ray

defects in WFPC2 images, it has one major drawback -- it is
slow. The L.A.COSMIC is an embarrassingly parallel
algorithm and is ideally suited to being implemented as a
parallel-processing image-analysis application.

CRBLASTER Application
I have written a portable parallel-processing image-analysis
pro-gram, called CRBLASTER1 which does cosmic ray
rejection of CCD images using the L.A.COSMIC algo-
rithm. CRBLASTER is written in C using the high-per-
formance computing industry standard Message Passing
Interface (MPI) library [3 – 5].

CRBLASTER uses a two-dimensional (2-D) image
partitioning algorithm which segments an input image into
N rectangular subimages of nearly equal area.
CRBLASTER initially used a one-dimensional (1-D) image
partitioning algorithm that segmented the input image into
N subimages that were horizontal slices of the input image
of nearly equal area. The original 1-D partitioning
algorithm can be simulated as a 1 x N segmentation with
the current 2-D partitioning algorithm.

The CRBLASTER code has been designed to be used by
others as a parallel-processing computational framework
that enables the easy development of other parallel-process-
ing image-analysis programs based on embarrassingly-par-
allel algorithms.

Figure 2 shows the flowchart diagram of CRBLASTER. An
outline of CRBLASTER follows. The director process
reads the input cosmic-ray-damaged FITS [6] image from
disk, splits it into N subimages, and then sends them to the
actor processes. Each actor process (sometimes including
the director process) does cosmic ray rejection using the
L.A.COSMIC algorithm on their own subimage and then
sends the resulting cosmic-ray cleaned subimage to the
director process. The director process collects all of the
cosmic-ray cleaned subimages and combines them together
to form the cosmic-ray-cleaned output image which is then
written to disk as a FITS image. The nitty gritty details of
the computational framework of CRBLASTER will be
discussed in much greater detail in the oral presentation.

Figure 2: A flowchart diagram of CRBLASTER.

1 The CRBLASTER code is currently available at
http://www.noao.edu/staff/mighell/crblaster

Figure 3: The measured performance of CRBBLASTER with
1 to 57 processors using a Tilera 64-core TILE64 processor.

The computational efficiencies of CRBLASTER with the
nonlinear L.A.COSMIC, the nearly-linear POISSON, and
linear WAITER work functions using a Tilera 64-core 700-
MHz TILE64 processor with 1 to 57 processors is shown in
Figure 3. The left image (“before”) in the figure is part of a
HST WFPC2 observation of the galaxy cluster MS
1137+67. The application of the L.A.COSMIC algorithm to
the input image produces the image on the right (“after”).
Note that almost all of the cosmic rays seen in the input
image have been removed. The outer graph of the Figure 3
gives the speedup factor as a function of the number of
processors on a log-log plot and the inner graph shows the
computational efficiency as a function of the number of
processors on a log-linear plot.

Acknowledgements
I am grateful to Dagim Seyoum for loaning me a Tilera
TILExpress-20G PCIe card along with the supporting
software. This work has been supported by a grant from the
National Aeronautics and Space Administration (NASA),
Inter-agency Order No. NNG06EC81I which was awarded
by the Applied Information Systems Research (AISR)
Program of NASA's Science Mission Directorate.

References
[1] B. Wilkinson, and M. Allen, Parallel Programming Tech-

niques & Applications Using Networked Workstations &
Parallel Computers, Second Edition, Pearson Education Inc.,
2004.

[2] P. G. van Dokkum, P. G. 2001, “Cosmic-Ray Rejection by
Laplacian Edge Detection”, Publications of the Astronomical
Society of the Pacific, 113, 1420–1427, 2001.

[3] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J.
Dongarra, MPI – The Complete Reference (Volume 1: The
MPI Core), Second Edition, MIT Press, 1998.

[4] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable
Parallel Programming with the Message Passing Interface,
Second Edition, MIT Press, 1999.

[5] P. S. Pacheco, Parallel Programming with MPI, Morgan
Kaufmann Publishers, Inc., 1997.

[6] D. C. Wells, E. W. Greisen, and R. H. Harten, “FITS – a
Flexible Image Transport System”, Astronomy and Astro-
physics Supplement Series, 44, 363–370, 1981.

