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Abstract 

While the writing of parallel-processing codes is, in 
general, a challenging task that often requires complicated 
choreography of interprocessor communications, the 
writing of parallel-processing image-analysis codes based 
on embarrassingly-parallel algorithms can be a much easier 
task to accomplish due to the limited need for 
communication between compute processes. I describe the 
design, implementation, and performance of a portable 
parallel-processing image-analysis application, called 
CRBLASTER, which does cosmic-ray rejection of CCD 
(charge-coupled device) images using the embarrassingly-
parallel  L.A.COSMIC algorithm. CRBLASTER is written 
in C using the high-performance computing industry stan-
dard Message Passing Interface (MPI) library. A detailed 
analysis is presented of the performance of CRBLASTER 
using between 1 and 57 processors on a low-power Tilera 
700-MHz 64-core TILE64 processor. The code has been 
designed to be used by others as a parallel-processing 
computational framework that enables the easy 
development of other parallel-processing image-analysis 
programs based on embarrassingly-parallel algorithms. 

 

Introduction 

One reason for the shortage of state-of-the-art parallel-
processing astrophysical image-analysis codes is that the 
writing of parallel codes is perceived to be difficult. When 
writing parallel-processing software, a programmer must 
learn to deal with challenges associated with the chore-
ography of multiple processes which typically can have 
complex interaction rules and requirements. Some of these 
interactions can cause problems never encountered with 
serial-processing software.  Professional-grade parallel-
processing debugging software tools are complex and 
sophisticated because they must detect these and other 
dynamic programming errors in real time; not surprisingly, 
these tools can easily cost many thousands of dollars for a 
single-user license. 

Programming algorithms can be classified as being 
“embarrassingly parallel” if they have computational work 
loads that can be divided into a number of (nearly) 
independent parts that are executed on separate processes; 
each compute process does its work independently with no 
(or little) communication between the other compute 
processes [1].  

Embarrassingly-parallel image analysis of a single image 
requires that the input image be segmented (partitioned) for 
processing by separate compute processes.  Figure 1 shows 
a simple way that one may segment an image into 3 sub-
images for processing by embarrassingly-parallel algorithm 
on 3 compute processes. Segmenting the image over rows 
instead of columns would be logically equivalent. 

 
Figure 1:  A simple way to segment an image into 3 subimages 

for an embarrassingly parallel algorithm. 

Many low-level image processing operations involve only 
local data with very limited (if any) communication 
between areas (regions) of interest.  Simple image proc-
essing tasks such as shifting, scaling, and rotation are  ideal 
candidates for embarrassingly-parallel computations.  

During the conversion of a traditional sequential (single-
process) image-analysis program to an embarrassingly-
parallel program, one must carefully consider edge effects 
where additional data beyond the edges of a particular 
image partition may be required in order to do a proper 
computation of the algorithm. In order to qualify as an 
embarrassingly-parallel computation, one tries to avoid 
interprocess communication between compute processes 
whenever possible; this make the parallel-processing 
program much easier to write and possibly faster to execute. 
Astrophysical image-analysis programs are potential cand-
idates for embarrassingly-parallel computation if the 
analysis of one subimage does not affect the analysis of 
another subimage. 

 

L.A.COSMIC Algorithm 
The L.A.COSMIC algorithm for cosmic-ray rejection is 
based on a variation of Laplacian edge detection; it iden-
tifies cosmic rays of arbitrary shapes and sizes by the 
sharpness of their edges and can reliably discriminate 
between poorly undersampled point sources and cosmic 
rays. The L.A.COSMIC algorithm is described in detail in 
reference [2] and is and is briefly outlined in Figure 2 (grey 
rectangles). The process is iterative and typically requires 4 
iterations for the optimal removal of cosmic rays from 
Hubble Space Telescope Wide-Field Planetary Camera 2 
(WFPC2) observations. Van Dokkum's IRAF script for 
cosmic-ray rejection in images, lacos_im.cl, is robust and 
requires very few user-defined parameters. Although 
lacos_im.cl does an excellent job in removing cosmic ray 



defects in WFPC2 images, it has one major drawback -- it is 
slow. The L.A.COSMIC is an embarrassingly parallel 
algorithm and is ideally suited to being implemented as a 
parallel-processing image-analysis application. 

CRBLASTER Application 
I have written a portable parallel-processing image-analysis 
pro-gram, called CRBLASTER1 which does cosmic ray 
rejection of CCD images using the L.A.COSMIC  algo-
rithm.  CRBLASTER is written in C using the high-per-
formance computing industry standard Message Passing 
Interface (MPI) library [3 – 5]. 

CRBLASTER uses a two-dimensional (2-D) image 
partitioning algorithm which segments an input image into 
N rectangular subimages of nearly equal area.  
CRBLASTER initially used a one-dimensional (1-D) image 
partitioning algorithm that segmented the input image into 
N subimages that were horizontal slices of the input image 
of nearly equal area. The original 1-D partitioning 
algorithm can be simulated as a 1 x N segmentation with 
the current 2-D partitioning algorithm. 

The CRBLASTER code has been designed to be used by 
others as a parallel-processing computational framework 
that enables the easy development of other parallel-process-
ing image-analysis programs based on embarrassingly-par-
allel algorithms. 

Figure 2 shows the flowchart diagram of CRBLASTER. An 
outline of CRBLASTER follows. The director process 
reads the input cosmic-ray-damaged FITS [6] image from 
disk, splits it into N subimages, and then sends them to the 
actor processes. Each actor process (sometimes including 
the director process) does cosmic ray rejection using the 
L.A.COSMIC algorithm on their own subimage and then 
sends the resulting cosmic-ray cleaned subimage to the 
director process. The director process collects all of the 
cosmic-ray cleaned subimages and combines them together 
to form the cosmic-ray-cleaned output image which is then 
written to disk as a FITS image. The nitty gritty details of 
the computational framework of CRBLASTER will be 
discussed in much greater detail in the oral presentation. 

 
Figure 2: A flowchart diagram of CRBLASTER.  

                                                
1 The CRBLASTER code is currently available at  
http://www.noao.edu/staff/mighell/crblaster 

 
Figure 3: The measured performance of CRBBLASTER with 
1 to 57 processors using a Tilera 64-core TILE64 processor. 

The computational efficiencies of  CRBLASTER with the 
nonlinear L.A.COSMIC, the nearly-linear POISSON, and 
linear WAITER work functions using a Tilera 64-core 700-
MHz TILE64 processor with 1 to 57 processors is shown in 
Figure 3. The left image (“before”) in the figure is part of a 
HST WFPC2 observation of the galaxy cluster MS 
1137+67. The application of the L.A.COSMIC algorithm to 
the input image produces the image on the right (“after”). 
Note that almost all of the cosmic rays seen in the input 
image have been removed. The outer graph of the Figure 3 
gives the speedup factor as a function of the number of 
processors on a log-log plot and the inner graph shows the 
computational efficiency as a function of the number of 
processors on a log-linear plot. 
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