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Introduction 
Shared memory, coherent embedded microprocessors such 

as the Tilera TILEPro processor family continue to scale 

the number of processing cores available with each 

generation. As we enter an era of many-core embedded 

computing devices the challenges to software developers 

continue to grow. 

Mapping algorithms and applications to 10s of cores today 

to 100s of cores tomorrow requires performance scalability 

that is transparent across a range of computer architectures. 

These architectures often exhibit variable communication 

and compute costs as found in commodity cc-NUMA chip 

multiprocessors (CMP). The memory hierarchies may vary 

in their block size, capacity, number of levels, and 

coherency. The processing elements may be asymmetric, 

differing across a single die in clock speed due to thermal 

conditions, process variation, multiple voltage domains, and 

feature sets. The algorithms may contain data dependencies 

or may be composed in different ways which results in 

additional variability of computation and communication at 

runtime. Such variances reduce the effectiveness of static 

partitioning and require sophisticated load balancing 

strategies that account for the state of the runtime and 

available parallelism among other factors. 

One strategy for achieving performance scalability is to 

employ cache-oblivious algorithms. These algorithms 

recursively decompose the input data set into units of work, 

called tasks, until the data size associated with leaf tasks 

can fit into the closest memory to a processing element. 

This provides a measure of locality that may be exploited at 

runtime with a dynamic scheduling policy. 

A popular technique for efficient dynamic scheduling of 

cache-oblivious algorithms on a chip multiprocessor is 

work stealing [1, 2]. Work stealing schedulers attempt to 

keep all available processors busy with useful work through 

load balancing and employ various heuristics to ensure that 

caches are used effectively and memory growth is bounded 

at runtime. 

We describe the design of a dynamic scheduler which uses 

a variant of the work stealing policy. We measure the 

performance scalability and parallel efficiency of several 

industry benchmarks taken from MIT Cilk, SPLASH-2, 

PARSEC, and Barcelona OpenMP. These benchmarks 

employ a task-based programming model where fine-

grained tasks are exposed to a runtime scheduler 

responsible for mapping the available parallelism to the 

logical processing elements. Source code annotations 

similar to those available in Cilk and OpenMP are used to 

expose parallelism. These annotations are implemented 

using the standard C preprocessor for broader portability.  

We demonstrate scalability to large core counts, in our case 

64, on the Tilera TILEPro64 processor for a selection of 

numerical benchmarks without tuning algorithm parameters 

favoring a specific cache size or configuration. Our goal is 

to demonstrate the efficacy of cache-oblivious algorithms 

for performance scalability. As a baseline we compare the 

scalability against a commodity multi-core processor: the 

Intel i7-920 Quad Core Nehalem with HyperThreading. 

Dynamic Scheduling 
A CMP in the near future will feature 100s to 1000s of 

cores with complex memory hierarchies. These processors 

will have a unified, coherent address space but with a much 

higher cost for remote memory accesses in a NUMA 

configuration. The DARPA UHPC program [3] determined 

that the language and runtime layers of the software stack 

of massively parallel systems must have a mechanism of 

expressing and exploiting fine-grained parallelism in the 

form of tasks. To that end, dynamic scheduling has become 

a critical piece of software infrastructure and has a direct 

impact on the scalability and performance of current and 

future workloads. 

Our parallel programming platform is composed of a small 

set of language annotations built on top of ISO C++, a 

runtime scheduler and execution model, and support for 

various programming models. In our scalability study we 

utilize the task parallel programming model in several 

industry standard benchmarks for shared memory 

computers. We determine where the major scalability 

bottlenecks are and address them directly with architectural 

and implementation changes in the runtime scheduler. We 

focus initially on the scalability of numerical algorithms for 

an embedded many-core processor, the Tilera TILEPro64. 

We verified that any design decisions made in the runtime 

to accommodate the TILEPro64 would benefit or at least 

not affect the scalability of the runtime on other platforms. 

Work stealing schedulers operate by executing locally 

available tasks on each logical processor in depth-first order 

to mirror a sequential execution. When local work is 

exhausted, the local processor enters the idle state and looks 

for another logical processor, called the victim, to take tasks 

from. This operation is called stealing and the perpetrator is 

labeled a thief. The data structures in a work stealing 

scheduler must be designed to ensure that operations on it 

are free of hazards but also efficient to reduce unnecessary 

contention and overhead. In addition, several heuristics are 

used to encourage idle logical processors to look for large 



amounts of work to steal to amortize the cost of this 

expensive operation. 

Most current work stealing schedulers choose a victim with 

a uniform random distribution. At scale, this policy results 

in poor locality and excessive cache misses. Instead, we 

group logical processors into a hierarchy of NUMA-like 

nodes. These logical NUMA nodes may or may not 

correspond to the physical topology of the processors. 

However, in our experiments we noted improved scalability 

over randomized victim selection even on UMA processors. 

We use a highly configurable distributed data structure for 

holding ready tasks in the runtime scheduler which 

facilitates rapid experimentation with various scheduling 

policies. Each logical processor is associated with an 

instance of this data structure. The simplest structure is a 

linear list of tasks. At up to 32 cores, this structure scaled 

well but idle logical processors were limited to stealing a 

single task at a time. Since the frequency of steal operations 

is proportional to the amount of computational imbalance, 

highly irregular workloads suffer from contention and 

excessive overhead. To further amortize the cost of stealing, 

we group tasks into blocks each holding a fixed number of 

tasks. The resulting steal operation transfers several tasks 

from a victim to the thief. While this reduced contention, 

some workloads include phases where relatively few tasks 

are available in the system and therefore parallelism is 

limited. When blocks are a fixed size, load imbalance 

increases and we observe poor scalability above 48 cores. 

We make the observation that the amount of tasks to steal 

should be proportional to the number of available tasks in 

the system, and our data structure is modified to store a set 

of trees that grow logarithmically with the number of tasks 

in the system. The steal operation on this arrangement 

transfers a fraction of available tasks from the victim to the 

thief. Using this structure, we were able to scale to all 

available cores on the TILEPro64 processor with no 

observed penalty on a commodity multi-core processor. 

Performance Scalability Benchmarks 
We measure scalability on as many as 57 tiles on the Tilera 

TILEPro64 and show the speedup at several reference 

points corresponding to common processor configurations. 

Preliminary benchmark results are shown in Figures 1 and 

2. These benchmarks were adapted from the MIT Cilk 

distribution and represent cache-oblivious versions of 

numerical algorithms. In both cases, minimal changes were 

made to the benchmarks. The Cilk keywords were replaced 

with our own annotations, but otherwise the algorithmic 

structure was unchanged. Because these algorithms are 

cache-oblivious, they subdivide computations until the 

terminal computations can fit into any data cache. The 

algorithms can therefore scale across a range of devices, 

from commodity multi-cores to embedded many-cores. 

We demonstrate the results on at least two processor 

platform configurations to show that a common runtime 

scheduler can make effective use of a range of hardware. 

The first is an embedded many-core device, the Tilera 

TILEPro64 which represents a UMA configuration with 64  

32-bit tiles connected via the iMesh interconnect. The 

second is a popular multi-core device, the Intel Core i7-920 

which represents a cc-NUMA configuration with 4 64-bit 

cores connected via the QPI interconnect. Simultaneous 

multi-threading (SMT) via HyperThreading technology 

provides for an additional 4 logical processors. 

Figure 1 shows the scalability results of a single precision 

heat diffusion algorithm employing Jacobi iterations on a 

matrix of size 4K-by-0.5K. Figure 2 shows the scalability 

results of a single precision LU decomposition with a 

matrix size of 1K-by-1K. 

Summary 
We described various strategies to improve work-stealing 

schedulers to promote locality and reduce overhead during 

the load balancing operation on embedded many-core 

processors including an improved victim selection strategy 

that considers locality as well as aggregate stealing of tasks 

in proportion to the amount of available work in the system. 

More importantly, we observed that the commonly 

employed randomized victim selection policy scales poorly 

at high core counts. 

Our preliminary benchmark results demonstrate the 

scalability of our runtime scheduler across all core counts 

on task-based, cache-oblivious numerical algorithms. That 

is, we observe a performance benefit from all available 

processing elements on the TILEPro64. 

 

Figure 1: Heat Diffusion TILEPro64 Scalability. 

 

Figure 1: LU Decomposition TILEPro64 Scalability. 
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