
Performance Scalability on Embedded Many-Core Processors

Michael Champigny mchampig@mc.com

Mercury Computer Systems, Advanced Computing Solutions

Introduction
Shared memory, coherent embedded microprocessors such

as the Tilera TILEPro processor family continue to scale

the number of processing cores available with each

generation. As we enter an era of many-core embedded

computing devices the challenges to software developers

continue to grow.

Mapping algorithms and applications to 10s of cores today

to 100s of cores tomorrow requires performance scalability

that is transparent across a range of computer architectures.

These architectures often exhibit variable communication

and compute costs as found in commodity cc-NUMA chip

multiprocessors (CMP). The memory hierarchies may vary

in their block size, capacity, number of levels, and

coherency. The processing elements may be asymmetric,

differing across a single die in clock speed due to thermal

conditions, process variation, multiple voltage domains, and

feature sets. The algorithms may contain data dependencies

or may be composed in different ways which results in

additional variability of computation and communication at

runtime. Such variances reduce the effectiveness of static

partitioning and require sophisticated load balancing

strategies that account for the state of the runtime and

available parallelism among other factors.

One strategy for achieving performance scalability is to

employ cache-oblivious algorithms. These algorithms

recursively decompose the input data set into units of work,

called tasks, until the data size associated with leaf tasks

can fit into the closest memory to a processing element.

This provides a measure of locality that may be exploited at

runtime with a dynamic scheduling policy.

A popular technique for efficient dynamic scheduling of

cache-oblivious algorithms on a chip multiprocessor is

work stealing [1, 2]. Work stealing schedulers attempt to

keep all available processors busy with useful work through

load balancing and employ various heuristics to ensure that

caches are used effectively and memory growth is bounded

at runtime.

We describe the design of a dynamic scheduler which uses

a variant of the work stealing policy. We measure the

performance scalability and parallel efficiency of several

industry benchmarks taken from MIT Cilk, SPLASH-2,

PARSEC, and Barcelona OpenMP. These benchmarks

employ a task-based programming model where fine-

grained tasks are exposed to a runtime scheduler

responsible for mapping the available parallelism to the

logical processing elements. Source code annotations

similar to those available in Cilk and OpenMP are used to

expose parallelism. These annotations are implemented

using the standard C preprocessor for broader portability.

We demonstrate scalability to large core counts, in our case

64, on the Tilera TILEPro64 processor for a selection of

numerical benchmarks without tuning algorithm parameters

favoring a specific cache size or configuration. Our goal is

to demonstrate the efficacy of cache-oblivious algorithms

for performance scalability. As a baseline we compare the

scalability against a commodity multi-core processor: the

Intel i7-920 Quad Core Nehalem with HyperThreading.

Dynamic Scheduling
A CMP in the near future will feature 100s to 1000s of

cores with complex memory hierarchies. These processors

will have a unified, coherent address space but with a much

higher cost for remote memory accesses in a NUMA

configuration. The DARPA UHPC program [3] determined

that the language and runtime layers of the software stack

of massively parallel systems must have a mechanism of

expressing and exploiting fine-grained parallelism in the

form of tasks. To that end, dynamic scheduling has become

a critical piece of software infrastructure and has a direct

impact on the scalability and performance of current and

future workloads.

Our parallel programming platform is composed of a small

set of language annotations built on top of ISO C++, a

runtime scheduler and execution model, and support for

various programming models. In our scalability study we

utilize the task parallel programming model in several

industry standard benchmarks for shared memory

computers. We determine where the major scalability

bottlenecks are and address them directly with architectural

and implementation changes in the runtime scheduler. We

focus initially on the scalability of numerical algorithms for

an embedded many-core processor, the Tilera TILEPro64.

We verified that any design decisions made in the runtime

to accommodate the TILEPro64 would benefit or at least

not affect the scalability of the runtime on other platforms.

Work stealing schedulers operate by executing locally

available tasks on each logical processor in depth-first order

to mirror a sequential execution. When local work is

exhausted, the local processor enters the idle state and looks

for another logical processor, called the victim, to take tasks

from. This operation is called stealing and the perpetrator is

labeled a thief. The data structures in a work stealing

scheduler must be designed to ensure that operations on it

are free of hazards but also efficient to reduce unnecessary

contention and overhead. In addition, several heuristics are

used to encourage idle logical processors to look for large

amounts of work to steal to amortize the cost of this

expensive operation.

Most current work stealing schedulers choose a victim with

a uniform random distribution. At scale, this policy results

in poor locality and excessive cache misses. Instead, we

group logical processors into a hierarchy of NUMA-like

nodes. These logical NUMA nodes may or may not

correspond to the physical topology of the processors.

However, in our experiments we noted improved scalability

over randomized victim selection even on UMA processors.

We use a highly configurable distributed data structure for

holding ready tasks in the runtime scheduler which

facilitates rapid experimentation with various scheduling

policies. Each logical processor is associated with an

instance of this data structure. The simplest structure is a

linear list of tasks. At up to 32 cores, this structure scaled

well but idle logical processors were limited to stealing a

single task at a time. Since the frequency of steal operations

is proportional to the amount of computational imbalance,

highly irregular workloads suffer from contention and

excessive overhead. To further amortize the cost of stealing,

we group tasks into blocks each holding a fixed number of

tasks. The resulting steal operation transfers several tasks

from a victim to the thief. While this reduced contention,

some workloads include phases where relatively few tasks

are available in the system and therefore parallelism is

limited. When blocks are a fixed size, load imbalance

increases and we observe poor scalability above 48 cores.

We make the observation that the amount of tasks to steal

should be proportional to the number of available tasks in

the system, and our data structure is modified to store a set

of trees that grow logarithmically with the number of tasks

in the system. The steal operation on this arrangement

transfers a fraction of available tasks from the victim to the

thief. Using this structure, we were able to scale to all

available cores on the TILEPro64 processor with no

observed penalty on a commodity multi-core processor.

Performance Scalability Benchmarks
We measure scalability on as many as 57 tiles on the Tilera

TILEPro64 and show the speedup at several reference

points corresponding to common processor configurations.

Preliminary benchmark results are shown in Figures 1 and

2. These benchmarks were adapted from the MIT Cilk

distribution and represent cache-oblivious versions of

numerical algorithms. In both cases, minimal changes were

made to the benchmarks. The Cilk keywords were replaced

with our own annotations, but otherwise the algorithmic

structure was unchanged. Because these algorithms are

cache-oblivious, they subdivide computations until the

terminal computations can fit into any data cache. The

algorithms can therefore scale across a range of devices,

from commodity multi-cores to embedded many-cores.

We demonstrate the results on at least two processor

platform configurations to show that a common runtime

scheduler can make effective use of a range of hardware.

The first is an embedded many-core device, the Tilera

TILEPro64 which represents a UMA configuration with 64

32-bit tiles connected via the iMesh interconnect. The

second is a popular multi-core device, the Intel Core i7-920

which represents a cc-NUMA configuration with 4 64-bit

cores connected via the QPI interconnect. Simultaneous

multi-threading (SMT) via HyperThreading technology

provides for an additional 4 logical processors.

Figure 1 shows the scalability results of a single precision

heat diffusion algorithm employing Jacobi iterations on a

matrix of size 4K-by-0.5K. Figure 2 shows the scalability

results of a single precision LU decomposition with a

matrix size of 1K-by-1K.

Summary
We described various strategies to improve work-stealing

schedulers to promote locality and reduce overhead during

the load balancing operation on embedded many-core

processors including an improved victim selection strategy

that considers locality as well as aggregate stealing of tasks

in proportion to the amount of available work in the system.

More importantly, we observed that the commonly

employed randomized victim selection policy scales poorly

at high core counts.

Our preliminary benchmark results demonstrate the

scalability of our runtime scheduler across all core counts

on task-based, cache-oblivious numerical algorithms. That

is, we observe a performance benefit from all available

processing elements on the TILEPro64.

Figure 1: Heat Diffusion TILEPro64 Scalability.

Figure 1: LU Decomposition TILEPro64 Scalability.

References
 [1] G. Cong et al., “Solving Large, Irregular Graph Problems

Using Adaptive Work-Stealing,” ICPP’08: Proc. Parallel

Processing, IEEE-CS, pp. 536-545, 2008.

 [2] J. Dinan et al., “Scalable Work Stealing,” SC’09: Proc.

Conference on High Performance Networking and

Computing, ACM, pp. 1-11, 2009.

 [3] W. Harrod, “Ubiquitous High Performance Computing

Program”, DARPA-BAA-10-37, 2010.

