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• Increasingly complex 
application design

• Adaptive algorithms
• More elements
• Higher dimensionality
• Fused consideration (e.g., 

detection/imaging)

The Problem

• Increasingly complex hardware
• More coarse-grained parallelism
• SIMD
• Data locality
• Proprietary programming models and 

languages (e.g., CUDA)
• Explicit resource management 

(memories, communication)

• Software challenges
• Open API programming language
• Performance
• Productivity
• Portability
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Simple Programming Flow

Sequential ANSI 
C Code

Parallel Code 
(Multiple Different Targets)

Radar 
Algorithms

R-Stream®
High-Level C 

Compiler

Back-end Compilers 
(gcc, icc, cudacc, 

…)

R-Stream® is an advanced high level compiler developed by Reservoir Labs, Inc.
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• Examined speedups for Givens QR decomposition algorithm as central 
component of an advanced STAP filter (Mitre RT-STAP benchmark)

• But:
• QR is already in library. Where is benefit of auto parallelization?
• Practical radar algorithms are moving to incremental formulation (with lots of 

elements) 
• QR is in the context of other parts of radar (weight application, etc)

Previously
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• Examine automatic mapping of radar algorithms to 
advanced multi-core hardware

• Key points:
• Can we automatically optimize and show parallel 

speedups? What about locality?
• Can global optimization explore greater opportunities for 

speedups?
• How is the performance compared to libraries?

The Experiment



Reservoir Labs 9.7.10 

Adaptive Beamforming
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• Significant parallelism is needed to fully utilize all resources
• Locality is also critical to minimize communication
• Parallelism can come at the expense of locality

• Our approach: R-Stream compiler exposes parallelism via affine scheduling 
that simultaneously augments locality using loop fusion

Tradeoffs Between Parallelism and Locality

High on-chip 
parallelism

Limited bandwidth at 
chip border

Reuse data once 
loaded on chip = 

locality
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Parallelism/Locality Tradeoff Example

/* 
* Original code: 
*   Simplified CSLC-LMS 
*/

for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {

z[i]=0; 
for (j=0; j<4000; j++)

z[i]= z[i]+B[i][j]*x[k][j];
}
for (i=0; i<3997; i++)

w[i]=w[i]+z[i]; 
}

doall (i=0; i<400; i++)
doall (j=0; j<3997; j++)

z_e[j][i]=0
doall (i=0; i<400; i++)

doall (j=0; j<3997; j++)
for (k=0; k<4000; k++)

z_e[j][i]=z_e[j][i]+B[j][k]*x[i][k];
doall (i=0; i<3997; i++)

for (j=0; j<400; j++)
w[i]=w[i]+z_e[i][j];

doall (i=0; i<3997; i++)
z[i] = z_e[i][399];  

Max. parallelism
(no fusion)

Array z gets expanded, to 
introduce another level of 
parallelism

Data 
accumulation

→ 2 levels of parallelism, but poor data reuse (on array z_e)

Maximum distribution destroys locality
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Parallelism/Locality Tradeoff Example (cont.)

doall (i=0; i<3997; i++)
for (j=0; j<400; j++) {

z[i]=0;
for (k=0; k<4000; k++)

z[i]=z[i]+B[i][k]*x[j][k];
w[i]=w[i]+z[i];

}

Max. fusion

→ Very good data reuse (on array z), but only 1 level of parallelism

Aggressive loop fusion destroys 
parallelism (i.e., only 1 degree of 
parallelism)/* 

* Original code: 
*   Simplified CSLC-LMS 
*/

for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {

z[i]=0; 
for (j=0; j<4000; j++)

z[i]= z[i]+B[i][j]*x[k][j];
}
for (i=0; i<3997; i++)

w[i]=w[i]+z[i]; 
}
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Parallelism/Locality Tradeoff Example (cont.)

doall (i=0; i<3997; i++) {
doall (j=0; j<400; j++) {

z_e[i][j]=0;
for (k=0; k<4000; k++)

z_e[i][j]=z_e[i][j]+B[i][k]*x[j][k];
}
for (j=0; j<400; j++)

w[i]=w[i]+z_e[i][j];
}
doall (i=0; i<3997; i++)

z[i]=z_e[i][399];

Parallelism with 
partial fusion

→ 2 levels of parallelism with good data reuse (on array z_e)

Data 
accumulation

Expansion of array z
Partial fusion doesn’t 
decrease parallelism

/* 
* Original code: 
*   Simplified CSLC-LMS 
*/

for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {

z[i]=0; 
for (j=0; j<4000; j++)

z[i]= z[i]+B[i][j]*x[k][j];
}
for (i=0; i<3997; i++)

w[i]=w[i]+z[i]; 
}
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Parallelism/Locality Tradeoffs: Performance 
Numbers

→ Code with a good balance between parallelism and fusion performs best



Reservoir Labs 9.7.10 

• R-Stream uses a heuristic based on an objective function with several cost 
coefficients:

• slowdown in execution if a loop p is executed sequentially rather than in parallel
• cost in performance if two loops p and q remain unfused rather than fused

• These two cost coefficients address parallelism and locality in a unified and 
unbiased manner (as opposed to traditional compilers)

• Fine-grained parallelism, such as SIMD, can also be modeled using similar 
formulation 

R-Stream: Affine Scheduling and Fusion
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• Main comparisons:
• R-Stream High-Level C Compiler 3.1.2
• Intel MKL 10.2.1

Experimental Evaluation

Radar 
code MKL calls

Configuration 1: MKL

Radar 
code

GCC

Configuration 2: Low-level compilers

ICC

Radar 
code

Configuration 3: R-Stream

Optimized 
radar code

GCC

ICC
R-Stream
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• Intel Xeon workstation:
• Dual quad-core E5405 Xeon processors (8 cores total) 
• 9GB memory

• 8 OpenMP threads

• Single precision floating point data

• Low-level compilers and the used flags:
• GCC: -O6 -fno-trapping-math -ftree-vectorize -msse3 -fopenmp
• ICC: -fast -openmp

Experimental Evaluation (cont.)
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• Beamforming algorithms:
• MVDR-SER: Minimum Variance Distortionless Response using 

Sequential Regression
• CSLC-LMS: Coherent Sidelobe Cancellation using Least Mean Square
• CSLC-RLS: Coherent Sidelobe Cancellation using Robust Least 

Square

• Expressed in sequential ANSI C

• 400 radar iterations

• Compute 3 radar sidelobes (for CSLC-LMS and CSLC-RLS)

Radar Benchmarks
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MVDR-SER
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CSLC-LMS
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CSLC-RLS
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• R-Stream performs automatic parallelization for beamforming 
algorithms

• Sequential ANSI C inputs

• Optimizations not just for parallelism but also locality
• A unified approach to precise tradeoffs between parallelism and 

locality

• Performance results very good
• Can be up to 7x faster than implementations based on the 

leading industrial math library (Intel MKL)

Conclusions
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