
Reservoir Labs 9.7.10

Albert Hartono, Nicolas Vasilache, Cedric Bastoul, Allen Leung,
Benoit Meister, Richard Lethin, and Peter Vouras1

Reservoir Labs, Inc.
1Naval Research Laboratory

Automatic Parallelization and Locality
Optimization of Beamforming Algorithms

Reservoir Labs 9.7.10

• Sponsors:
• Missile Defense Agency (Contract # W9113M-08-C-0146)
• DARPA
• DoE/DoD – other

• Subcontractor:
• Lockheed Martin MS2

– Rick Pancoast
– Scott Sawyer

Acknowledgment

Reservoir Labs 9.7.10

• Increasingly complex
application design

• Adaptive algorithms
• More elements
• Higher dimensionality
• Fused consideration (e.g.,

detection/imaging)

The Problem

• Increasingly complex hardware
• More coarse-grained parallelism
• SIMD
• Data locality
• Proprietary programming models and

languages (e.g., CUDA)
• Explicit resource management

(memories, communication)

• Software challenges
• Open API programming language
• Performance
• Productivity
• Portability

Intel Nehalem Nvidia
GPU

ClearSpeed
CSX700 Tilera

TILE64

A/D

FFT

Summer

s(k)

w1(k)

Array
Element 1

A/D

FFT

s(k)

w2(k)

Array
Element 2

A/D

FFT

s(k)

wn(k)

Array
Element n

Residue

Reservoir Labs 9.7.10

Simple Programming Flow

Sequential ANSI
C Code

Parallel Code
(Multiple Different Targets)

Radar
Algorithms

R-Stream®
High-Level C

Compiler

Back-end Compilers
(gcc, icc, cudacc,

…)

R-Stream® is an advanced high level compiler developed by Reservoir Labs, Inc.

Reservoir Labs 9.7.10

• Examined speedups for Givens QR decomposition algorithm as central
component of an advanced STAP filter (Mitre RT-STAP benchmark)

• But:
• QR is already in library. Where is benefit of auto parallelization?
• Practical radar algorithms are moving to incremental formulation (with lots of

elements)
• QR is in the context of other parts of radar (weight application, etc)

Previously

0

1

2

3

4

5

6

128 x
128

256 x
256

512 x
512

1024 x
1024

2048 x
2048

Matrix Size

Speedup vs. w/o R-Stream

w/o R-stream
mapped, 1 core
mapped, 4 cores
mapped, 8 cores

RT-STAP Hard Profile (8 Processors)

Reservoir Labs 9.7.10

• Examine automatic mapping of radar algorithms to
advanced multi-core hardware

• Key points:
• Can we automatically optimize and show parallel

speedups? What about locality?
• Can global optimization explore greater opportunities for

speedups?
• How is the performance compared to libraries?

The Experiment

Reservoir Labs 9.7.10

Adaptive Beamforming

Adder

Adaptive
Control

w1

w2

wn

Steering Vector: s

Sensor Array: Covariance
Matrix R Adaptive Weights: w

Output
…

Reservoir Labs 9.7.10

• Significant parallelism is needed to fully utilize all resources
• Locality is also critical to minimize communication
• Parallelism can come at the expense of locality

• Our approach: R-Stream compiler exposes parallelism via affine scheduling
that simultaneously augments locality using loop fusion

Tradeoffs Between Parallelism and Locality

High on-chip
parallelism

Limited bandwidth at
chip border

Reuse data once
loaded on chip =

locality

Reservoir Labs 9.7.10

Parallelism/Locality Tradeoff Example

/*
* Original code:
* Simplified CSLC-LMS
*/

for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {

z[i]=0;
for (j=0; j<4000; j++)

z[i]= z[i]+B[i][j]*x[k][j];
}
for (i=0; i<3997; i++)

w[i]=w[i]+z[i];
}

doall (i=0; i<400; i++)
doall (j=0; j<3997; j++)

z_e[j][i]=0
doall (i=0; i<400; i++)

doall (j=0; j<3997; j++)
for (k=0; k<4000; k++)

z_e[j][i]=z_e[j][i]+B[j][k]*x[i][k];
doall (i=0; i<3997; i++)

for (j=0; j<400; j++)
w[i]=w[i]+z_e[i][j];

doall (i=0; i<3997; i++)
z[i] = z_e[i][399];

Max. parallelism
(no fusion)

Array z gets expanded, to
introduce another level of
parallelism

Data
accumulation

→ 2 levels of parallelism, but poor data reuse (on array z_e)

Maximum distribution destroys locality

Reservoir Labs 9.7.10

Parallelism/Locality Tradeoff Example (cont.)

doall (i=0; i<3997; i++)
for (j=0; j<400; j++) {

z[i]=0;
for (k=0; k<4000; k++)

z[i]=z[i]+B[i][k]*x[j][k];
w[i]=w[i]+z[i];

}

Max. fusion

→ Very good data reuse (on array z), but only 1 level of parallelism

Aggressive loop fusion destroys
parallelism (i.e., only 1 degree of
parallelism)/*

* Original code:
* Simplified CSLC-LMS
*/

for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {

z[i]=0;
for (j=0; j<4000; j++)

z[i]= z[i]+B[i][j]*x[k][j];
}
for (i=0; i<3997; i++)

w[i]=w[i]+z[i];
}

Reservoir Labs 9.7.10

Parallelism/Locality Tradeoff Example (cont.)

doall (i=0; i<3997; i++) {
doall (j=0; j<400; j++) {

z_e[i][j]=0;
for (k=0; k<4000; k++)

z_e[i][j]=z_e[i][j]+B[i][k]*x[j][k];
}
for (j=0; j<400; j++)

w[i]=w[i]+z_e[i][j];
}
doall (i=0; i<3997; i++)

z[i]=z_e[i][399];

Parallelism with
partial fusion

→ 2 levels of parallelism with good data reuse (on array z_e)

Data
accumulation

Expansion of array z
Partial fusion doesn’t
decrease parallelism

/*
* Original code:
* Simplified CSLC-LMS
*/

for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {

z[i]=0;
for (j=0; j<4000; j++)

z[i]= z[i]+B[i][j]*x[k][j];
}
for (i=0; i<3997; i++)

w[i]=w[i]+z[i];
}

Reservoir Labs 9.7.10

Parallelism/Locality Tradeoffs: Performance
Numbers

→ Code with a good balance between parallelism and fusion performs best

Reservoir Labs 9.7.10

• R-Stream uses a heuristic based on an objective function with several cost
coefficients:

• slowdown in execution if a loop p is executed sequentially rather than in parallel
• cost in performance if two loops p and q remain unfused rather than fused

• These two cost coefficients address parallelism and locality in a unified and
unbiased manner (as opposed to traditional compilers)

• Fine-grained parallelism, such as SIMD, can also be modeled using similar
formulation

R-Stream: Affine Scheduling and Fusion









+ ∑∑

∈∈ edges loop
e

loops e
el

l
l fupw

cost of unfusing
two loops

slowdown in sequential
execution

minimize

Patent Pending

Reservoir Labs 9.7.10

• Main comparisons:
• R-Stream High-Level C Compiler 3.1.2
• Intel MKL 10.2.1

Experimental Evaluation

Radar
code MKL calls

Configuration 1: MKL

Radar
code

GCC

Configuration 2: Low-level compilers

ICC

Radar
code

Configuration 3: R-Stream

Optimized
radar code

GCC

ICC
R-Stream

Reservoir Labs 9.7.10

• Intel Xeon workstation:
• Dual quad-core E5405 Xeon processors (8 cores total)
• 9GB memory

• 8 OpenMP threads

• Single precision floating point data

• Low-level compilers and the used flags:
• GCC: -O6 -fno-trapping-math -ftree-vectorize -msse3 -fopenmp
• ICC: -fast -openmp

Experimental Evaluation (cont.)

Reservoir Labs 9.7.10

• Beamforming algorithms:
• MVDR-SER: Minimum Variance Distortionless Response using

Sequential Regression
• CSLC-LMS: Coherent Sidelobe Cancellation using Least Mean Square
• CSLC-RLS: Coherent Sidelobe Cancellation using Robust Least

Square

• Expressed in sequential ANSI C

• 400 radar iterations

• Compute 3 radar sidelobes (for CSLC-LMS and CSLC-RLS)

Radar Benchmarks

Reservoir Labs 9.7.10

MVDR-SER

Reservoir Labs 9.7.10

CSLC-LMS

Reservoir Labs 9.7.10

CSLC-RLS

Reservoir Labs 9.7.10

• R-Stream performs automatic parallelization for beamforming
algorithms

• Sequential ANSI C inputs

• Optimizations not just for parallelism but also locality
• A unified approach to precise tradeoffs between parallelism and

locality

• Performance results very good
• Can be up to 7x faster than implementations based on the

leading industrial math library (Intel MKL)

Conclusions

	Automatic Parallelization and Locality Optimization of Beamforming Algorithms
	Acknowledgment
	The Problem
	Simple Programming Flow
	Previously
	The Experiment
	Adaptive Beamforming
	Tradeoffs Between Parallelism and Locality
	Parallelism/Locality Tradeoff Example
	Parallelism/Locality Tradeoff Example (cont.)
	Parallelism/Locality Tradeoff Example (cont.)
	Parallelism/Locality Tradeoffs: Performance Numbers
	R-Stream: Affine Scheduling and Fusion
	Experimental Evaluation
	Experimental Evaluation (cont.)
	Radar Benchmarks
	MVDR-SER
	CSLC-LMS
	CSLC-RLS
	Conclusions

