
Carnegie Mellon

μ-op Fission: Hyper-threading
without the Hyper-headachewithout the Hyper headache

Anthony Cartolano

Robert Koutsoyannis

Daniel S. McFarlin

C i M ll U i iCarnegie Mellon University

Dept. of Electrical and Computer Engineering

Carnegie Mellon

Streaming WHT Results on Intel Multicore:
Best Versus Single CoreBest Versus Single Core

Carnegie Mellon

Hierarchy of Parallel Hardware Features
CPU0 CPU1

core core core core

CPU0 CPU1
SMP

cache

memory

cache

memoryRI
N

G
RI

N
G CMP

memory memory

SH
A

R
SH

A
R

SMT

1 2 4 4 5 1 1 3 1 2 4 4 5 1 1 3

 Characterized by degree of sharing α (Cost of Communication)-1
6 3 5 7

+ + + +

6 3 5 7

+ + + +SIMD

 SIMD: share register file, functional units, cache hierarchy

 SMP: share main memory and QPI link

Carnegie Mellon

Hierarchy of Software Interfaces?
CPU0 CPU1

core core core core

CPU0
WW

CPU1
SMP

cache

memory

cache

memoryg
to

 H
g

to
 H CMP

ou
pl

in
g

ou
pl

in
g

SMT

CoCo

1 2 4 4 5 1 1 3 1 2 4 4 5 1 1 3

6 3 5 7

+ + + +

6 3 5 7

+ + + +SIMD

 General Purpose SW threading model to rule them all: affinity knob

 Overhead: intrinsics vs. OpenMP vs. APIs + Runtimes

 Amortizing runtime overhead dictates partitioning: precludes SMT

Carnegie Mellon

Hierarchy of Software Interfaces?
CPU0 CPU1

core core core core

CPU0
WW

CPU1
SMP

cache

memory

cache

memoryg
to

 H
g

to
 H CMP

ou
pl

in
g

ou
pl

in
g

SMT

CoCo

1 2 4 4 5 1 1 3 1 2 4 4 5 1 1 3

6 3 5 7

+ + + +

6 3 5 7

+ + + +SIMD
 View SMT and SIMD as a continuum for parallel numeric code

E SMT SW d E d SMT l ll li i i h i i i Expose SMT to SW and Encode SMT loop parallelization with intrinsics to
minimize overhead

 Requires HW/SW support and co-optimization to achieve

Carnegie Mellon

Outline
 Motivation

 SMT Hardware Bottlenecks

 μ-op Fission

 Required software support Required software support

 Experimental Results Experimental Results

 Concluding Remarks

Carnegie Mellon

Generic N-way SMT

 Narrow Front-End vs. Wide Backend

Carnegie Mellon

2-Way SMT Case Study

 Front-End (Fetch & Decode) is implemented as Fine-Grained
Multi-threadingMulti threading

 Done to reduce i-cache, decode latency

 Can lead to back-end starvation

Carnegie Mellon

μ-op Fission

 2 iterations compiler-fused with clone bit
 Equivalent to unroll-and-jam optimization

 Decoder fissions iterations into available RATs Decoder fissions iterations into available RATs
 Reduces fetch & decode bandwidth and power
 Allows narrow front-end to keep wide back-end pipeline full

Carnegie Mellon

Formal HW/SW Co-Design: The Data Pump Architecture

 SW Parameterizable
 NUMA

SW P bl SW Programmable
Memory Controller

 Decoupled ComputeDecoupled Compute
& Communication

Instruction Streams
 Asynch Gather/Scatter
 MEM <-> LM
 VRF <-> LM VRF <-> LM

 Simple Manycore

 SIMD

Carnegie Mellon

High Dimensional Non-Uniform HW Parameter Space

Carnegie Mellon

Software Architecture: SpiralSoftware Architecture: Spiral

 Library generator for linear transforms
(DFT, DCT, DWT, filters, ….) and recently more …(, , , ,) y

 Wide range of platforms supported:
scalar, fixed point, vector, parallel, Verilog, GPU, p , , p , g,

 Research Goal: “Teach” computers to write fast libraries
 Complete automation of implementation and optimization
 Conquer the “high” algorithm level for automation

 When a new platform comes out:
R t t d libRegenerate a retuned library

 When a new platform paradigm comes out (e.g., CPU+GPU):
U d t th t l th th iti th libUpdate the tool rather than rewriting the library

Intel uses Spiral to generate parts of their MKL and IPP libraries

Carnegie Mellon

Spiral: A Domain Specific Program Generator
Transform Optimization at allTransform
user specified

Fast algorithm parallelization

Optimization at all
abstraction levels

Fast algorithm
in SPL
many choices

parallelization
vectorization

∑-SPL: loop
optimizations

C C d Iteration of this process
f ldi

constant folding
scheduling
……

C Code: te ation of this p ocess
to search for the fastest

But that’s not all …

constant folding
scheduling
……

……

Iteration of this process to search for the fastest

Carnegie Mellon

Spiral Formula Representation of SAR

Grid
Compute
Grid
Computepp

Range
Interpolation
Range
Interpolation

Azimuth
Interpolation
Azimuth
Interpolation

2D FFT2D FFT

Carnegie Mellon

Spiral’s Automatically Generated
PFA SAR Image Formation CodePFA SAR Image Formation Code

SAR Image Formation on Intel platforms
f [Gfl /]

44 43

40

50

performance [Gflop/s]

3.0 GHz Core 2 (65nm)

3.0 GHz Core 2 (45nm)
newer

20

30

40
2.66 GHz Core i7

3.0 GHz Core i7 (Virtual)

newer
platforms

0

10

20

0
16 Megapixels 100 Megapixels

 Algorithm byJ. Rudin (best paper award, HPEC 2007): 30 Gflop/s on Cellg y (p p) p

 Each implementation: vectorized, threaded, cache tuned, ~13 MB of code

 Code was not written by a human

Carnegie Mellon

Required Software Support
 Executable has stub code which initializes pagetables and

other CPU control registers at load time on all HW contexts

 Compiler performs virtual Loop-Unroll-and-Jam on tagged
loopsloops
 Maximizes sharing

 SMT Thread Cyclic Partitioning

i=0: A;B;C;D;

i=1: A;B;C;D;

i=0: A;B;C;D;

i=1: A;B;C;D;i=1: A;B;C;D;

i=0: A;B;C;D;

i=1: A;B;C;D;i=1: A;B;C;D;

i=2: A;B;C;D;

i=3: A;B;C;D;

i=2: A;B;C;D;

i=3: A;B;C;D;i=3: A;B;C;D;

i=2: A;B;C;D;i=2: A;B;C;D;

i=3: A;B;C;D;i=3: A;B;C;D;; ; ; ;; ; ; ;

th1th1th0

; ; ; ;; ; ; ;

th1th1th0 th2th2 th3th3

Carnegie Mellon

Fork Support
 Need a lightweight fork mechanism g g
 Presently, Can only communicate between SMT register files via memory

store 0 (a0 0); store 1 (a0 1); store 2 (a0 2); store 3 (a0 3);store 0, (a0,0); store 1, (a0,1); store 2, (a0,2); store 3, (a0,3);

load (a0, APIC_ID), i;

 Load/Store Queue prevents materialization in most cases

load (a0,0), i; load (a0,1), i;load (a0,1), i; load (a0,2), i;load (a0,2), i; load (a0,3), i;load (a0,3), i;

p

 Prefer to have multi-assign statement for loop index with a vector input

 Need broadcast assignment for live-in set to the loop

i= {0,1,2,3}; i=1;i=1;i=0; i=2;i=2; i=3;i=3;

load addr, a0;
load addr, a0;load addr, a0;

load addr, a0;load addr, a0;

load addr, a0;

load addr, a0;load addr, a0;

Carnegie Mellon

Sample Loop Execution

i = {0,1};

load addr, a0;

i = 1; i = 1;

load addr, a0;load addr, a0;

i = 0;

load addr, a0;

L0: cmp i, n;

jmpgte END; flushgteflushgte

L0: cmp i, n; L0: cmp i, n;

jmpgte END;

L0: cmp i, n;

jmpgte END;

A;B;C;D;

add 2 i;

flushgteflushgtejmpgte END;

A;B;C;D;A;B;C;D;

add 2 i;add 2 i;

A;B;C;D;

add 2 i;add 2, i;

jmp L0

add 2, i;add 2, i;add 2, i;

jmp L0

END: waitrobs END: waitrobs

Carnegie Mellon

Experimental Setup

 Used PTLSim with above configuration

 Larger ROB size + physical register size than Nehalem

S ll b f f i l i Smaller number of functional units

 Simulate μ-op fission with explicit unroll-and-jam of
source code coupled with penalized functional unitsource code coupled with penalized functional unit
latencies

Carnegie Mellon

Experimental Results

Carnegie Mellon

Results Drilldown
Performance Improvement of Various µArch MetricsPerformance Improvement of Various µArch Metrics
for µ-op Fissioned SSE interpolation Kernel
percentage improvement over baseline

35

40

45
2-way SMT

4-way SMT

25

30

35

10

15

20

0

5

10

Loads/cycle FP Insns/cycle Int Insns/cycle ROB Hit
Rate/result/cycle

Replays

Carnegie Mellon

Concluding Remarks
D d HW/SW C i i i h Demonstrated a HW/SW Co-optimization approach to
SMT parallelization

 Preliminary evaluation suggests performance benefit for a
range of numerical kernels

 Scales with number of SMT contexts

 “Thread Fusion” research suggests a 10-15% power
consumption reduction is possible due to reducedconsumption reduction is possible due to reduced
fetch/decode

 Future work: handling control-flow with predication and
diverge-merge

Carnegie Mellon

THANK YOU!

?Questions?

