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Streaming WHT Results on Intel Multicore: 
Best Versus Single CoreBest Versus Single Core 
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Hierarchy of Parallel Hardware Features
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 Characterized by degree of sharing α (Cost of Communication)-1 
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 SIMD: share register file, functional units, cache hierarchy  

 SMP: share main memory and QPI link 
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Hierarchy of Software Interfaces?
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 General Purpose SW threading  model to rule them all: affinity knob 

 Overhead: intrinsics vs. OpenMP vs. APIs + Runtimes

 Amortizing runtime overhead dictates partitioning: precludes SMT 
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Hierarchy of Software Interfaces?
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 View SMT and SIMD as a continuum for parallel numeric code

E SMT SW d E d SMT l ll li i i h i i i Expose SMT to SW and Encode SMT loop parallelization with intrinsics to 
minimize overhead 

 Requires HW/SW support and co-optimization to achieve  



Carnegie Mellon

Outline
 Motivation

 SMT Hardware Bottlenecks

 μ-op Fission 

 Required software support Required software support

 Experimental Results Experimental Results

 Concluding Remarks
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Generic N-way SMT 

 Narrow Front-End vs. Wide Backend
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2-Way SMT Case Study 

 Front-End (Fetch & Decode) is implemented as Fine-Grained 
Multi-threadingMulti threading 

 Done to reduce i-cache, decode latency 

 Can lead to back-end starvation 
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μ-op Fission

 2 iterations compiler-fused with clone bit
 Equivalent to unroll-and-jam optimization

 Decoder fissions iterations into available RATs Decoder fissions iterations into available RATs
 Reduces fetch & decode bandwidth and power
 Allows narrow front-end to keep wide back-end pipeline full
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Formal HW/SW Co-Design: The Data Pump Architecture

 SW Parameterizable
 NUMA

SW P bl SW Programmable 
Memory Controller

 Decoupled ComputeDecoupled Compute
& Communication 

Instruction Streams
 Asynch Gather/Scatter 
 MEM <-> LM
 VRF <-> LM VRF <-> LM

 Simple Manycore

 SIMD
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High Dimensional Non-Uniform HW Parameter Space 
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Software Architecture: SpiralSoftware Architecture: Spiral

 Library generator for linear transforms 
(DFT, DCT, DWT, filters, ….) and recently more …( , , , , ) y

 Wide range of platforms supported: 
scalar, fixed point, vector, parallel, Verilog, GPU, p , , p , g,

 Research Goal: “Teach” computers to write fast libraries
 Complete automation of implementation and optimization
 Conquer the “high” algorithm level for automation

 When a new platform comes out: 
R t t d libRegenerate a retuned library

 When a new platform paradigm comes out (e.g., CPU+GPU):
U d t th t l th th iti th libUpdate the tool rather than rewriting the library

Intel uses Spiral to generate parts of their MKL and IPP libraries
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Spiral: A Domain Specific Program Generator
Transform Optimization at allTransform
user specified

Fast algorithm parallelization

Optimization at all
abstraction levels

Fast algorithm
in SPL
many choices

parallelization
vectorization

∑-SPL: loop 
optimizations

C C d Iteration of this process 
f ldi

constant folding
scheduling
……

C Code: te ation of this p ocess
to search for the fastest

But that’s not all …

constant folding
scheduling
……

……

Iteration of this process to search for the fastest
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Spiral Formula Representation of SAR
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Spiral’s Automatically Generated
PFA SAR Image Formation CodePFA SAR Image Formation Code

SAR Image Formation on Intel platforms
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 Algorithm byJ. Rudin (best paper award, HPEC 2007): 30 Gflop/s on Cellg y ( p p ) p

 Each implementation: vectorized, threaded, cache tuned, ~13 MB of code

 Code was not written by a human
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Required Software Support
 Executable has stub code which initializes pagetables and 

other CPU control registers at load time on all HW contexts

 Compiler performs virtual Loop-Unroll-and-Jam on tagged 
loopsloops
 Maximizes sharing 

 SMT Thread Cyclic Partitioning 

i=0: A;B;C;D;

i=1: A;B;C;D;

i=0: A;B;C;D;

i=1: A;B;C;D;i=1: A;B;C;D;

i=0: A;B;C;D;

i=1: A;B;C;D;i=1: A;B;C;D;

i=2: A;B;C;D;

i=3: A;B;C;D;

i=2: A;B;C;D;

i=3: A;B;C;D;i=3: A;B;C;D;

i=2: A;B;C;D;i=2: A;B;C;D;

i=3: A;B;C;D;i=3: A;B;C;D;; ; ; ;; ; ; ;

th1th1th0

; ; ; ;; ; ; ;

th1th1th0 th2th2 th3th3
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Fork Support 
 Need a lightweight fork mechanism g g
 Presently, Can only communicate between SMT register files via memory

store 0 (a0 0); store 1 (a0 1); store 2 (a0 2); store 3 (a0 3);store 0, (a0,0); store 1, (a0,1); store 2, (a0,2); store 3, (a0,3);

load (a0, APIC_ID), i; 

 Load/Store Queue prevents materialization in most cases 

load (a0,0), i; load (a0,1), i;load (a0,1), i; load (a0,2), i;load (a0,2), i; load (a0,3), i;load (a0,3), i;

p

 Prefer to have multi-assign statement for loop index with a vector input

 Need broadcast assignment for live-in set to the loop 

i= {0,1,2,3}; i=1;i=1;i=0; i=2;i=2; i=3;i=3;

load addr, a0;
load addr, a0;load addr, a0;

load addr, a0;load addr, a0;

load addr, a0;

load addr, a0;load addr, a0;
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Sample Loop Execution 

i = {0,1}; 

load addr, a0;

i = 1; i = 1; 

load addr, a0;load addr, a0;

i = 0; 

load addr, a0;

L0:   cmp i,  n; 

jmpgte END; flushgteflushgte

L0:   cmp i,  n; L0:   cmp i,  n; 

jmpgte END;

L0:   cmp i,  n; 

jmpgte END;

A;B;C;D;

add 2 i;

flushgteflushgtejmpgte END;

A;B;C;D;A;B;C;D;

add 2 i;add 2 i;

A;B;C;D;

add 2 i;add 2,  i;

jmp L0

add 2,  i;add 2,  i;add 2,  i;

jmp L0

END:  waitrobs END:  waitrobs
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Experimental Setup

 Used PTLSim with above configuration

 Larger ROB size + physical register size than Nehalem

S ll b f f i l i Smaller number of functional units

 Simulate μ-op fission with explicit unroll-and-jam of 
source code coupled with penalized functional unitsource code coupled with penalized functional unit 
latencies 
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Experimental Results 
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Results Drilldown 
Performance Improvement of Various µArch MetricsPerformance Improvement of Various µArch Metrics
for µ-op Fissioned SSE interpolation Kernel
percentage improvement over baseline
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Concluding Remarks 
D d HW/SW C i i i h Demonstrated a HW/SW Co-optimization approach to 
SMT parallelization 

 Preliminary evaluation suggests performance benefit for a 
range of numerical kernels 

 Scales with number of SMT contexts

 “Thread Fusion” research suggests a 10-15% power 
consumption reduction is possible due to reducedconsumption reduction is possible due to reduced 
fetch/decode     

 Future work: handling control-flow with predication and 
diverge-merge 
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THANK YOU! 

?Questions?


