n-op Fission: Hyper-threading
without the Hvper-headache

sy - - -~ - T ="

Anthony Cartolano

Robert Koutsoyannis

Daniel S. McFarlin

Carnegie Mellon University

Dept. of Electrical and Computer Engineering

Streaming WHT Results on Intel Multicore:
Best Versus Single Core

Penryn, Core i7 Best vs. Single Core Performance

performance [Gflop/s]

(’
SPIRAL%
www.spiral.net

20

18

16 & %

14 7
12

10

4 -e=Core i7 4T, 2C Streaming

Core i7 8T, 1C Streaming
5 =+=Penryn 4T, 4C Streaming
-#-Penryn 8T, 1C Streaming
0 L] L L] L L] L L L] L
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

WHT Input Size

————
Hierarchy of Parallel Hardware Features SE2A-F

CPU1

CPUO

SMP

CMP

173
o
o
o
O
)
(C
=
=
- |
=
=
o
o

SIMD

m Characterized by degree of sharing a (Cost of Communication)
m SIMD: share register file, functional units, cache hierarchy
m SMP: share main memory and QPI link

HierarcHy o! So!tware Inter!aces.! SPIRALY

ERU

CPUO

i
i

T
©
v

<
o
>

®

Coupling to HW

m General Purpose SW threading model to rule them all: affinity knob
m Overhead: intrinsics vs. OpenMP vs. APIs + Runtimes
= Amortizing runtime overhead dictates partitioning: precludes SMT

- __
Hierarchy of Software Interfaces?

CPUO CPU1

T
©
v
<
o
>
®

Coupling to HW

m View SMT and SIMD as a continuum for parallel numeric code

m Expose SMT to SW and Encode SMT loop parallelization with intrinsics to
minimize overhead

m Requires HW/SW support and co-optimization to achieve

-
Outline

m Motivation

m SMT Hardware Bottlenecks

m M-op Fission

= Required software support

m Experimental Results

m Concluding Remarks

www.spiral.net

Generic N-way SMT

I-Cache

Register
RAT Allocation Table

Re-Order
ROB Buffer
Reservation Station

FU FU FU
Cluster FU Cluster FU Cluster FU

Cluster Cluster Cluster

m Narrow Front-End vs. Wide Backend

2-Way SMT Case Study SPIRALSS

i=2: A;B;C;D;
i=3: A;B;C;D;

I-Cache

Decoder i=1:AB;CD;

m Front-End (Fetch & Decode) is implemented as Fine-Grained
Multi-threading

m Done to reduce i-cache, decode latency

m Can lead to back-end starvation

H-op Fission SPIRALS

i=4,5: A;B;C;D;
I-Cache

Decoder [E23AB;CD: @

i=0: A;B;C;D; i=1: A;B;C;D;

RAT RAT

= 2 iterations compiler-fused with clone bit
= Equivalent to unroll-and-jam optimization
= Decoder fissions iterations into available RATs
= Reduces fetch & decode bandwidth and power

= Allows narrow front-end to keep wide back-end pipeline full

p Architec
DP ‘“\‘ P
vemory < > momory [——>{_ver ‘
= SW Parameterizable
= NUMA ‘.
' DP
= SWProgrammable @ | T
Memory Controller | | y
' : : VCP :
= Decoupled Compute“ n |t | SEGO <‘i t;ie CP,
& Communication ". Memory 1 T T
Instruction Streams ! eam ||
= Asynch Gather/Scatter i) Il o CP,
= MEM<->LM ',‘ — -
= VRF<->LM 1 [S
) | | cache IH LLLLLL —
= Simple Manycore Py
SIMD

Formal HW/SW Co-Design: The Data Pum

e —
High Dimensional Non-Uniform HW Parameter SpaceseiraLs
Cost: Area (mm?)

=

e 20.2

—————
-I"-_F

25 1””F

20 -

&
-
}.n"" a —
_ﬂ.—'
-~ 1
_.___..-r" e = -
-
-
e
l:

10
77 1MB
512KB
5 - 256KB
128KB
4KB

8CP 4CP 2cp 4 cp

e —————————
Software Architecture: Spiral

Library generator for linear transforms
(DFT, DCT, DWT, filters,) and recently more ...

Wide range of platforms supported:
scalar, fixed point, vector, parallel, Verilog, GPU

Research Goal: “Teach” computers to write fast libraries
" Complete automation of implementation and optimization
= Conquer the “high” algorithm level for automation

When a new platform comes out:
Regenerate a retuned library

When a new platform paradigm comes out (e.g., CPU+GPU):
Update the tool rather than rewriting the library

Intel uses Spiral to generate parts of their MKL and IPP libraries

Spiral: A Domain Specific Program Generator SHRALF

Transform DFTg Optimization at all
user specified m abstraction levels
Fast algorithm (DFT,® I4) 75 (1> ® (DF T2 ® I) parallelization
in SPL T3 (12 ® DF T2) L3)) L3 vectorization

many choices

.

$-SPL: > (8;DFT26G;) >
> (Sm diag

e

> (Sk,l diag(ty,) DF T2 G;) loop
tm) DFT5 Gy,)) optimizations

void sub (double *y, double *x) {
double fo, f£1, fz, f£3, £4, £7, £s, f£1l0, L11;

P

fo = x[0] - x[3];

f1 = x[0] + =[3]; .
C Code: £2 2 x(1) - x(2]); constant folding

£3 = x[1] + x[2];

f4 = f1 - £3; 1

ylol = f1 + £3; SChedUIlng

vI[2] = 0.7071067811865476 * f4;

f7 = 0.9238795325112867 * f0; W eee

£8 = 0.3826834323650898 * f2;

vI[1] = £7 + £8;

f10 = 0.3826834323650898 * f0;

f11 = (-0.9238795325112867) * f2;

vI[3] = £10 + £11;

Iteration bf this process to search for the fastest

SPlRAL$
www.spiral.net

Spiral Formula Representation of SAR

Grid

Compute
Range _ Azimuth . oD EET
| nter polation | nter polation

SARLvm—nxn — DFTuxnolInterprym—nxn
DFT, (DFT,®1,) o (I, @ DFT,)

Interpgxm—nxn — (INterpg_, ®;In) o (I @; Interpy,—p)

l

n—2
Interp,_,, — (@InterpSegk) @ InterpSegPrunedy,
i=0

1
InterpSeq;, — Ggﬁ'”_”‘3 0 iPrunedDF T p—ym 0 (—) o DFTy,
n

Spiral’s Automatically Generated
PFA SAR Image Formation Code

SAR Image Formation on Intel platforms
performance [Gflop/s]

>0 44 m 3.0 GHz Core 2 (65nm)
20] m 3.0 GHz Core 2 (45nm)
N M 2.66 GHz Core i7 newer
30 3.0 GHz Core i7 (Virtual) platforms
20
10
0

16 Megapixels 100 Megapixels

m Algorithm byJ. Rudin (best paper award, HPEC 2007): 30 Gflop/s on Cell
m Each implementation: vectorized, threaded, cache tuned, ~13 MB of code
m Code was not written by a human

(’
SPIRAL§
www.spiral.net

SPIRAL %
www.spiral.net

Required Software Support

m Executable has stub code which initializes pagetables and
other CPU control registers at load time on all HW contexts

m Compiler performs virtual Loop-Unroll-and-Jam on tagged

= Maximizes sharing
= SMT Thread Cyclic Partitioning

i=0: A;B;C;D; i=0: A;B;C;D; i=0: A;B;C;D;

i=1: A;B;C;D; i=1: A;B;C;D; i=1: A;B;C;D;

i=2: A;B;C;D; i=2: A;B;C;D;

i=3: A;B;C;D; i=3: A;B;C;D; iI=3: A;B;C;D;

Fork Support SPIRAL'S
m Need a lightweight fork mechanism

= Presently, Can only communicate between SMT register files via memory

Compile Time
store 0, (a0,0); store 1, (a0,1); store 2, (a0,2); store 3, (a0,3);

| load (a0, APIC_ID), i
load (a0,0), i; load (a0,1), i; load (a0,3), i;

« Load/Store Queue prevents materialization in most cases

= Prefer to have multi-assign statement for loop index with a vector input

S —> [e

"= Need broadcast assignment for live-in set to the loop

load addr, a0; load addr, a0;
@ load addr, a0; >
load addr, a0;

Sample Loop Execution

Compile Time
i={0,1};

load addr, a0
LO: cmp i, n;
jmpgte END;

A;B;C;D;

jmp LO

END: waitrobs

load addr, a0
LO: cmp i, n;
jmpgte END;

A;B;C;D;

jmp LO

END: waitrobs

SPIRAL %
www.spiral.net

load addr, a0;

LO: cmp i, n;

A;B;C;D;

Y
- e

Experimental Setup

SPIRAL %
www.spiral.net

Architecture Parameter(s) Value(s)
Fetch/Decode Width 8
Dispatch/Issue Width 4

Commut Width -
Load/Store Queue 48/32
ROB Size 256
Physical Register File Size 256
Physical Register Files 3
Load/Store/Arithmetic/FP Units 2121212
L1 Cache Size/Latency 16 KB/1 cycle
L2 Cache Size/Latency 256 KB/5 cycles
L3 Cache Size/Latency 4 MB/8 cycles
Main Memory Latency 140 cycles

m Used PTLSim with above configuration

Larger ROB size + physical register size than Nehalem
Smaller number of functional units

Simulate p-op fission with explicit unroll-and-jam of
source code coupled with penalized functional unit

latencies

SPIRAL %
www.spiral.net

Experimental Results

Speedup of Various Kernels via p-op Fission SMT
percentage reduction in total cycle count

45
40
35
30
25
20
15
10

5

0

B 2-way SMT
®4-way SMT

SSE Scalar Streaming Non-2 Power Binary Matrix
Interpolation Interpolation WHT DFTs Factorization

Results Drilldown

Performance Improvement of Various pArch Metrics
for p-op Fissioned SSE interpolation Kernel
percentage improvement over baseline

45
40

W 2-way SMT
H 4-way SMT

Loads/cycle

FP Insns/cycle

Int Insns/cycle

ROB Hit
Rate/result/cycle

SPIRAL %
www.spiral.net

Replays

Concluding Remarks

s Demonstrated a HW/SW Co-optimization approach to
SMT parallelization

m Preliminary evaluation suggests performance benefit for a
range of numerical kernels

m Scales with number of SMT contexts

m “Thread Fusion” research suggests a 10-15% power
consumption reduction is possible due to reduced
fetch/decode

m Future work: handling control-flow with predication and
diverge-merge

THANK YOU!

@3' nmn

' |-:| ‘.I \H.L'ﬁ - I.

Carnegie Mellon

(
SPIRAL
www.spiral.net

Hational
Finysical
Scigmie
Conscatium

