
1

Micro-op Fission: Hyper-threading Without the Hyper-headache

Robert Koutsoyannis, Anthony Cartolano and Daniel S. McFarlin
Carnegie Mellon University, Dept. of Electrical and Computer Engineering

{rjkousto, acartola, dmcfarli}@ece.cmu.edu

Introduction
The proliferation of Simultaneous Multithreading (SMT),

also called Hyper-threading, in commercial processors such
as the IBM Power7 and the Intel Core i7, offers the possi-
bility of efficient fine-grain loop parallelization due to low
HW thread overhead. At the same time, traditional, nonpar-
allelizing loop optimizations are experiencing diminishing
returns as they increase pressure on the i-cache, decoder and
register file; these dense, monolithic CAM/RAM structures
are scaling poorly in modern deep sub-micron processes
compared to the clustered CAM/RAM structures used to
implement SMT[1] .

SMT’s performance potential however is undermined by
two major factors: heavyweight software threading inter-
faces and the limited fetch/decode bandwidth of all com-
mercial SMT CPUs. First, the popular threading APIs like
OpenMP are designed for general purpose threading which
results in high overhead as software must mediate the entire
thread lifetime. Second, all commercial SMT CPUs use a
time-division multiplexing fetch/decode scheme for SMT
threads; the frontend is only fetching/decoding from one
thread per cycle. This design can starve the backend of the
CPU especially when SMT is used for numerical kernels.
Our recent attempt to parallelize a numerical kernel using
OpenMP on SMT cores resulted in at least a 10% slowdown
on the Intel Core i7 and is consistent with the slowdowns
observed in [2].

Approach
This paper proposes the use of SMT-based microthreads

for fine-grain loop parallelization. Microthreads were first
proposed in [3] and are lightweight, ephemeral, HW helper
threads spawned by an explicit ISA instruction or HW
events. These threads then run in tandem or ahead of a
general purpose HW thread. Microthreading enhances the
performance of single-threaded code by increasing ILP
mostly through runahead prefetching and branch resolution.
Unlike our proposed SMT-based microthreads, “classic”
microthreads are micro-coded programs that are extracted by
the compiler and execute in their own, private HW contexts.

In contrast, our approach exploits thread-level paral-
lelism (TLP) by statically “fusing” the iterations of a
parallelized loop into a single sequential instruction stream
at compile time and then “fissioning” this sequential stream
into parallel streams at runtime. The fissioned instruction
streams are steered by the decoder to separate SMT HW
contexts. Steering occurs when the decoder converts the
macro instructions into micro(µ)-ops. Our approach over-
comes the traditional SMT fetch/decode bottleneck, keeps
the wider backend fully fed and reduces fetch and decode

Figure 1: N-way Out-of-Order SMT Core

power consumption.
This paper makes two key contributions:
• We present a HW/SW co-optimization framework that

leverages existing OpenMP constructs and existing
SMT CPU HW to implement a microthreading infras-
tructure

• We demonstrate how this approach can be readily used
to speedup (6% average on 2-Way SMT and 19%
average on 4-Way SMT) a range of numerical kernels
without programmer intervention on current and near
term simulated SMT CPUs

Motivation
To help explain our approach, we describe the execu-

tion of a parallelized loop containing a body with four
statements: A, B, C, D on two SMT cores: a conventional
core and one that implements µ-op fission. First, we briefly
describe a generic N-way out-of-order SMT core shown
in Figure 1. This core has standard OOO architectural
features with a few notable exceptions: there are N program
counters, Register Alias Tables (RATs), Reorder Buffers
(ROBs). Also, there is a multiplexer between the i-cache and
a decoder and a demultiplexer between the decoder and the
RATs. This arrangement is common to all SMT CPUs and
highlights the chief SMT bottleneck; the narrow frontend.

We now describe the execution of the SMT parallelized
loop on a 2-way SMT core possessing a fetch/decode and
per RAT rename width of four instructions (shown in Figure
2). The core is executing the loop described above. We see
the first loop iteration en route to the RAT stage of the
pipeline. This iteration is colored orange to represent its
SMT thread assignment. Note that the the second iteration
has just been fetched by the second SMT thread’s PC (shown
in blue) and is being decoded. In the next cycle it will be
dispatched to the rename stage and the third loop iteration,



2

Figure 2: SMT Parallelized Loop Execution

Figure 3: Micro-op Fission Parallelized Loop Execution

again assigned to the first (orange) SMT thread in cyclic
fashion, will be fetched and deocded. The point is that
even though we have an aggegrate rename width of eight
instrucitons (four per RAT times two RATs) we can only
dispatch four due to the fetch/decode width limitations.

Now consider Figure 3, showing the same 2-way SMT
core but this time one that implements µ-op fission. One
major change is that the compiler has fused two adjacent
iterations into a single iteration. In other words, we still fetch
four instructions but we fission them after the decode stage
into eight instructions, four instructions to each RAT. Note
also that the program counter for the second thread has been
grayed out signifying that the second SMT thread is idle.
The main takeaway is that we only fetch from a single SMT
thread but broadcast those decoded µ-ops marked as fused,
by the compiler, to all subsequent backend SMT structures.
It is this compiler directed broadcasting that is the essence
of µ-op fission.

Experimental Setup and Results

Architectural Parameter(s) Value(s)

Fetch/Decode/Dispatch/Issue/Commit Width 4

Load/Store Queue Size 48/32

ROB Size 256

Physical Register File Size 3 x 256

Load/Store/Arithmetic/FP units 2/2/2/2

L1/L2/L3 Cache Size, Latency (cycles) 16 KB/256 KB/4 MB, 1/5/8

Main Memory Latency 140 cycles

We simulated three OOO SMT cores on a cycle accurate
x86 simulator, PTLSim, using the parameters described in
the table above. The cores differed only in the number of
SMT threads they support: one, two or four. We used five
different already highly tuned numerical kernels written in C

Figure 4: Performance Improvement of Micro-op Fission

and compiled using Intel ICC 11.1 with the -03 optimization
flag. Space constraints prevent us for describing the kernels
in detail but the first two are linear and radial interpolation
kernels from a high resolution SAR image formation kernel.
The WHT/DFT kernels are well known and the final kernel
is a heuristic driven, brute force Binary Matrix Factorization
kernel used in a super-optimizer. All kernels were simulated
up to 107instructions.

Figure 4 shows the results of our experiments. Over-
all performance gains are attained even for issue-width
(compute bound) kernels like the DFT due to improved
functional unit utilization. The main performance driver
for the interpolation and streaming kernels is the effective
prefetching performed by cyclically distributing iterations
amongst SMT threads [4]. The cache-lines fetched by the
nth SMT thread are often subsequently used by the 0..n−1
SMT threads in their later iterations. This implicit software
prefetching is vital for interpolation kernels which often
exhibit strides that are non-integral and/or non-linear and
therefore difficult for most HW prefetchers to satisfy.

Summary and Future Work
We have demonstrated a lightweight compile-

time/runtime optimization infrastructure for 2-way and
4-way OOO SMT cores that overcomes the traditional
SMT bottlenecks resulting in performance improvements
for a variety of numerical kernels. Our initial results have
been promising with estimated power savings in the 10%
realm as suggested by [5]. We hope to extend our approach
to wider issue-width architectures and hybrid CMP/SMT
designs.

REFERENCES
[1] Z. Chishti and T. N. Vijaykumar, “Optimal power/performance pipeline

depth for smt in scaled technologies,” IEEE Trans. Comput., vol. 57,
no. 1, pp. 69–81, 2008.

[2] M. Curtis-Maury and T. Wang, “Integrating multiple forms of mul-
tithreaded execution on multi-smt systems: A study with scientific
applications,” in QEST ’05, 2005, p. 199.

[3] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N.
Patt, “Simultaneous subordinate microthreading (ssmt),” in ISCA ’99:
Proceedings of the 26th annual international symposium on Computer
architecture, 1999, pp. 186–195.

[4] J. L. Lo, S. J. Eggers, H. M. Levy, S. S. Parekh, and D. M. Tullsen,
“Tuning compiler optimizations for simultaneous multithreading,” in
MICRO 30, 1997, pp. 114–124.

[5] J. González, Q. Cai, P. Chaparro, G. Magklis, R. Rakvic, and
A. González, “Thread fusion,” in ISLPED ’08, 2008, pp. 363–368.


