
Failing In Place for Low-Serviceability Infrastructure
Using High-Parity GPU-Based RAID

Matthew L. Curry, the University of Alabama at Birmingham and Sandia National Laboratories1, mlcurry@sandia.gov
Lee Ward, Sandia National Laboratories1, lee@sandia.gov

Anthony Skjellum, the University of Alabama at Birmingham, tony@cis.uab.edu

Motivation
In order to provide large quantities of high-reliability disk-
based storage, it has become necessary to aggregate disks
into fault-tolerant groups based on the RAID
methodology [6]. Most RAID levels do provide some fault
tolerance, but there are certain classes of applications that
require increased levels of fault tolerance within an array.
Some of these applications include embedded systems in
harsh environments that have a low level of serviceability,
or uninhabited data centers servicing cloud computing.

When describing RAID reliability, the Mean Time To Data
Loss (MTTDL) calculations will often assume that the time
to replace a failed disk is relatively low, or even negligible
compared to rebuild time. For platforms that are in remote
areas collecting and processing data, it may be impossible
to access the system to perform system maintenance for
long periods. A disk may fail early in a platform’s life, but
not be replaceable for much longer than typical for RAID
arrays. Service periods may be scheduled at intervals on the
order of months, or the platform may not be serviced until
the end of a mission in progress. Further, this platform may
be subject to extreme conditions that can accelerate wear
and tear on a disk, requiring even more protection from
failures.

We have created a high parity RAID implementation that
uses a Graphics Processing Unit (GPU) to compute more
than two blocks of parity information per stripe [4],
allowing extra parity to eliminate or reduce the requirement
for rebuilding data between service periods. While this type
of controller is highly effective for RAID 6 systems, an
important benefit is the ability to incorporate more parity
into a RAID storage system. Such RAID levels, as yet
unnamed, can tolerate the failure of three or more disks
(depending on configuration) without data loss.

While this RAID system certainly has applications in
embedded systems running applications in the field, similar
benefits can be obtained for servers that are engineered for
storage density, with less regard for serviceability or
maintainability. A storage brick can be designed to have a
MTTDL that extends well beyond the useful lifetime of the
hardware used, allowing the disk subsystem to require less
service throughout the lifetime of a compute resource. This
approach is similar to the Xiotech ISE [8]. Such a design
can be deliberately placed remotely (without frequent
support) in order to provide colocation, or meet cost goals.

1Sandia National Laboratories is a multi-program laboratory
operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin company, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
AC04-94AL85000.

Extra Parity or Hot Spares?
While it is possible to include hot spares, intentionally idle
disks that automatically replace failed disks, there is an
increasing source of errors that hot spares cannot address.
Unrecoverable read errors (UREs), encountered when a
disk cannot read data that was previously written, are a
well-known problem [5]. Disks are becoming much larger,
but no significant improvements have been made to bit
error rates (BERs), which range from one sector per 1014
bits read to one sector per 1015 bits read for SATA disks [5].

For a single two-terabyte drive with a BER of one sector in
1015 bytes, reading all of its contents has a 1.58%
probability of encountering a lost sector. However, in an
array composed of sixteen of these disks, a single pass has a
22.6% chance of losing data. When an array is left with no
available parity during a disk rebuild, bit errors are
uncorrectable, and data are lost. Figure 1 shows the
relationship between UREs and lost data. While a Bit Error
Rate (BER) of 10-15 provides much more protection than a
BER of 10-14, the chance of data loss is still high if no parity
is present to support a rebuild, depending on the size of the
array. As disk sizes increase, the likelihood of encountering
a URE becomes unacceptably high when no parity is
available. Even disks with a BER of 10-16 cannot read 13
TB with a 99% probability of success.

Figure 1: Probability of Avoiding URE

A further disadvantage of the hot spare is the unavoidable
window of vulnerability between when a disk has failed and
when a hot spare has been populated with reconstructed
data. When performing a rebuild operation, disks can be
stressed to the point of further failures, leaving the array in
a precarious state, lacking further fault tolerance. For
example, Sandia systems have experienced double-disk
failures in ten-disk RAID 6 arrays, requiring extensive
system maintenance to recover data due to subsequent
UREs.

A GPU-Based RAID Controller
RAID controllers do not typically have the capability of
supporting single volumes that can tolerate more than two
arbitrary failures, a requirement of RAID 6. Popular
hierarchical RAID levels [1], while capable of supporting
more than two failures, do not offer complete protection:
RAID 60, for example, can tolerate more than two failures
in some cases, but can lose data with as few as three
failures.

In order to support more fault tolerance, we have defined,
implemented, and optimized a high-performance software
RAID based on graphics processing units [4]. It
incorporates a Reed-Solomon coding library that uses
NVIDIA GPUs to provide a user-selectable number of
parity blocks per data stripe [2, 3].

A technical challenge in implementing a RAID system with
GPUs is the lack of kernel interfaces for accessing GPU
compute resources. The GPU-based RAID software is
implemented entirely in user space, interfacing with clients
via an iSCSI target. This arrangement allows for network
clients to mount the volume, or the local host to mount the
volume via a loopback interface.

Performance
Performance is evaluated by benchmarking three GPU-
based RAID levels, ranging from a two disk fault tolerant
configuration (denoted as GPU-RAID +2) to a four disk
fault tolerant configuration (denoted as GPU-RAID +4).
The GPU used is an NVIDIA GeForce GTX 285. The tests
for reads and writes were streaming, contiguous one
megabyte operations through the first ten gigabytes of the
volume. The results can be found in Figure 2.

Figure 2: Performance Comparison of RAID Levels through
iSCSI Target, Mounted Locally

While the GPU-based implementation performs read-
verification, a feature that is missing from Linux,
performance remains comparable to accessing a Linux MD
RAID 0 device through the iSCSI target. This points to the
iSCSI target implementation constituting the bottleneck in
the tests, as the disk bandwidth consumed by reading parity
does not affect the throughput attained. If the storage must
be accessed through iSCSI, the performance observed
indicates that there is no penalty for performing a streaming
workload, or using a file system that has a streaming access
pattern (like a log-structured file system [7]).

While no performance differences between different levels
are apparent from Figure 2, there is a computational cost for
implementing higher parity. The speed of the iSCSI target
hides the computation in this case. In other cases, the
computation may be hidden by the speeds of the disk
subsystem, with the exception of the bandwidth cost of read
verification [4].

Conclusions
For workloads where reliability is key, but conditions are
sub-optimal for routine serviceability, a high-parity RAID
can provide extra reliability in extraordinary situations. For
example, for installations requiring very high Mean Time
To Repair, the extra parity can eliminate certain problems
with maintaining hot spares, increasing overall reliability.
Furthermore, in situations where disk reliability is reduced
because of harsh conditions, extra parity can guard against
early data loss due to lowered Mean Time To Failure. If
used through an iSCSI interface with a streaming workload,
it is possible to gain all of these benefits without impacting
performance.

References
[1] S. Baek, B. Kim, E. Joung, and C. Park, “Reliability and

Performance of Hierarchical RAID with Multiple
Controllers,” Proceedings of PODC 2001: ACM Symposium
on Principles of Distributed Computing.

[2] M. Curry, A. Skjellum, H. L. Ward, and R. Brightwell,
“Arbitrary Dimension Reed-Solomon Coding and Decoding
for Extended RAID on GPUs,” Petascale Data Workshop
2008.

[3] M. Curry, A. Skjellum, H. L. Ward, and R. Brightwell,
“Gibraltar: A Library for RAID-Like Reed-Solomon Coding
on Programmable Graphics Processors,” submitted for
publication.

[4] M. Curry, H. L. Ward, A. Skjellum, and R. Brightwell, “A
Lightweight, GPU-Based Software RAID System,” to appear
in Proceedings of ICPP 2010: International Conference on
Parallel Processing.

[5] J. Gray and C. van Ingen, “Empirical Measurements of Disk
Failure Rates and Error Rates,” technical report, December
2005.

[6] D. Patterson, G. Gibson, and R. Katz, “A Case for Redundant
Arrays of Inexpensive Disks,” Proceedings of ACM
SIGMOD 1988.

[7] M. Rosenblum and J. Ousterhout, “The Design and
Implementation of a Log-Structured File System,” ACM
Transactions on Computer Systems, Vol. 10, No. 1, Feb.
1992.

[8] Xiotech, “ISE - The New Foundation of Data Storage,” http://
www.xiotech.com/ise-technology.php, accessed on May 25,
2010.

