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Motivation  
In order to provide large quantities of high-reliability disk- 
based storage, it has become necessary to aggregate disks 
into fault-tolerant groups based on the RAID 
methodology [6]. Most RAID levels do provide some fault 
tolerance, but there are certain classes of applications that 
require increased levels of fault tolerance within an array. 
Some of these applications include embedded systems in 
harsh environments that have a low level of serviceability, 
or uninhabited data centers servicing cloud computing. 

When describing RAID reliability, the Mean Time To Data 
Loss (MTTDL) calculations will often assume that the time 
to replace a failed disk is relatively low, or even negligible 
compared to rebuild time. For platforms that are in remote 
areas collecting and processing data, it may be impossible 
to access the system to perform system maintenance for 
long periods. A disk may fail early in a platform’s life, but 
not be replaceable for much longer than typical for RAID 
arrays. Service periods may be scheduled at intervals on the 
order of months, or the platform may not be serviced until 
the end of a mission in progress. Further, this platform may 
be subject to extreme conditions that can accelerate wear 
and tear on a disk, requiring even more protection from 
failures. 

We have created a high parity RAID implementation that 
uses a Graphics Processing Unit (GPU) to compute more 
than two blocks of parity information per stripe [4], 
allowing extra parity to eliminate or reduce the requirement 
for rebuilding data between service periods. While this type 
of controller is highly effective for RAID 6 systems, an 
important benefit is the ability to incorporate more parity 
into a RAID storage system. Such RAID levels, as yet 
unnamed, can tolerate the failure of three or more disks 
(depending on configuration) without data loss. 

While this RAID system certainly has applications in 
embedded systems running applications in the field, similar 
benefits can be obtained for servers that are engineered for 
storage density, with less regard for serviceability or 
maintainability. A storage brick can be designed to have a 
MTTDL that extends well beyond the useful lifetime of the 
hardware used, allowing the disk subsystem to require less 
service throughout the lifetime of a compute resource. This 
approach is similar to the Xiotech ISE [8]. Such a design 
can be deliberately placed remotely (without frequent 
support) in order to provide colocation, or meet cost goals. 
                                                 
 
1Sandia National Laboratories is a multi-program laboratory 
operated by Sandia Corporation, a wholly owned subsidiary of 
Lockheed Martin company, for the U.S. Department of Energy’s 
National Nuclear Security Administration under contract DE-
AC04-94AL85000. 

Extra Parity or Hot Spares? 
While it is possible to include hot spares, intentionally idle 
disks that automatically replace failed disks, there is an 
increasing source of errors that hot spares cannot address. 
Unrecoverable read errors (UREs), encountered when a 
disk cannot read data that was previously written, are a 
well-known problem [5]. Disks are becoming much larger, 
but no significant improvements have been made to bit 
error rates (BERs), which range from one sector per 1014 
bits read to one sector per 1015 bits read for SATA disks [5].  

For a single two-terabyte drive with a BER of one sector in 
1015 bytes, reading all of its contents has a 1.58% 
probability of encountering a lost sector. However, in an 
array composed of sixteen of these disks, a single pass has a 
22.6% chance of losing data. When an array is left with no 
available parity during a disk rebuild, bit errors are 
uncorrectable, and data are lost. Figure 1 shows the 
relationship between UREs and lost data. While a Bit Error 
Rate (BER) of 10-15 provides much more protection than a 
BER of 10-14, the chance of data loss is still high if no parity 
is present to support a rebuild, depending on the size of the 
array. As disk sizes increase, the likelihood of encountering 
a URE becomes unacceptably high when no parity is 
available. Even disks with a BER of 10-16 cannot read 13 
TB with a 99% probability of success. 

Figure 1: Probability of Avoiding URE 

A further disadvantage of the hot spare is the unavoidable 
window of vulnerability between when a disk has failed and 
when a hot spare has been populated with reconstructed 
data. When performing a rebuild operation, disks can be 
stressed to the point of further failures, leaving the array in 
a precarious state, lacking further fault tolerance. For 
example, Sandia systems have experienced double-disk 
failures in ten-disk RAID 6 arrays, requiring extensive 
system maintenance to recover data due to subsequent 
UREs. 



A GPU-Based RAID Controller 
RAID controllers do not typically have the capability of 
supporting single volumes that can tolerate more than two 
arbitrary failures, a requirement of RAID 6. Popular 
hierarchical RAID levels [1], while capable of supporting 
more than two failures, do not offer complete protection: 
RAID 60, for example, can tolerate more than two failures 
in some cases, but can lose data with as few as three 
failures. 

In order to support more fault tolerance, we have defined, 
implemented, and optimized a high-performance software 
RAID based on graphics processing units [4]. It 
incorporates a Reed-Solomon coding library that uses 
NVIDIA GPUs to provide a user-selectable number of 
parity blocks per data stripe [2, 3]. 

A technical challenge in implementing a RAID system with 
GPUs is the lack of kernel interfaces for accessing GPU 
compute resources. The GPU-based RAID software is 
implemented entirely in user space, interfacing with clients 
via an iSCSI target. This arrangement allows for network 
clients to mount the volume, or the local host to mount the 
volume via a loopback interface. 

Performance 
Performance is evaluated by benchmarking three GPU- 
based RAID levels, ranging from a two disk fault tolerant 
configuration (denoted as GPU-RAID +2) to a four disk 
fault tolerant configuration (denoted as GPU-RAID +4). 
The GPU used is an NVIDIA GeForce GTX 285. The tests 
for reads and writes were streaming, contiguous one 
megabyte operations through the first ten gigabytes of the 
volume. The results can be found in Figure 2. 

Figure 2: Performance Comparison of RAID Levels through 
iSCSI Target, Mounted Locally 

While the GPU-based implementation performs read- 
verification, a feature that is missing from Linux, 
performance remains comparable to accessing a Linux MD 
RAID 0 device through the iSCSI target. This points to the 
iSCSI target implementation constituting the bottleneck in 
the tests, as the disk bandwidth consumed by reading parity 
does not affect the throughput attained. If the storage must 
be accessed through iSCSI, the performance observed 
indicates that there is no penalty for performing a streaming 
workload, or using a file system that has a streaming access 
pattern (like a log-structured file system [7]). 

While no performance differences between different levels 
are apparent from Figure 2, there is a computational cost for 
implementing higher parity. The speed of the iSCSI target 
hides the computation in this case. In other cases, the 
computation may be hidden by the speeds of the disk 
subsystem, with the exception of the bandwidth cost of read 
verification [4]. 

Conclusions 
For workloads where reliability is key, but conditions are 
sub-optimal for routine serviceability, a high-parity RAID 
can provide extra reliability in extraordinary situations. For 
example, for installations requiring very high Mean Time 
To Repair, the extra parity can eliminate certain problems 
with maintaining hot spares, increasing overall reliability. 
Furthermore, in situations where disk reliability is reduced 
because of harsh conditions, extra parity can guard against 
early data loss due to lowered Mean Time To Failure. If 
used through an iSCSI interface with a streaming workload, 
it is possible to gain all of these benefits without impacting 
performance. 
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