Benchmark Evaluation of Radar Processing Algorithms on GPUs

HPEC 2010 15 September 2010

Lockheed Martin MS2 199 Borton Landing Road Moorestown, NJ 08057

Scott Sawyer

R. Bennett, R. Pancoast, M. Iaquinto,

R. Putatunda, N. Doss, J. Broadbent

Agenda

- Background
- GeForce GTX285 Architecture
- Pulse Compression Implementation
- Benchmark Analysis
- Shared Memory Study
- Path Forward

Background

- Next-generation radar architectures will need significantly more processing capacity
- Architecture options include multi-core CPUs, FPGAs and GPUs
- Algorithms of interest include:
 - Pulse compression
 - Pulse integration
 - Adaptive beam forming
- Pulse compression benchmarked on GeForce GTX285

NVIDIA GeForce GTX285

CUDA Compute Level 1.3

Multiprocessors: 30

Total cores: 240

Global Memory: 1 GB

Shared Memory: 16 KB per

multiprocessor

Processor Clock: 1476 MHz

 Theoretical peak throughput: 1063 GFLOPS

NVIDIA CUDA C Programming Guide, Version 3.1, 5/28/2010

Benchmark System Architecture

Pulse Compression Implementation

- C for CUDA
 - CUFFT for FFT and IFFT
 - Custom kernel for point-by-point multiplication
- MATLAB reference implementation
 - Input vectors
 - Result verification
- Assumptions
 - Pulsed radar
 - LFM Waveform
 - Frequency domain matched filter
- Best of 'N' runs taken
 - Assume least host OS interference

Input Vectors

- Simulated radar returns
 - Complex signal (interleaved real/imaginary)
 - Single-precision floating point
 - Constant delay/range
 - AWGN
- Variable pulse interval (FFT size)
 - 1024, 2048, 4096, ..., 65536 samples
- Variable pulse count
 - 1, 2, 4, ..., 64 pulses

Performance Metrics

Algorithm Timing

Total Latency

- Timing does not include file I/O
- Used CUDA event API to time asynchronous kernel calls

Operation Counts

- Assume radix-2 FFTs
- Count all floating point adds and multiplies in custom kernel

Performance vs. FFT Size

Performance vs. Pulse Count

Timing Breakdown

Example: 16K, 16 Pulses

HTD	FFT	Mult.	IFFT	DTH
1.179 ms	.194 ms	.056 ms	.176 ms	1.306 ms

- •15% run time, 85% transfer time
- •1696 MB/s PCIe (1x) transfer rate

All times in ms

	4096, 4 Pulses	4096, 16 Pulses	16K, 4 Pulses	16K, 16 Pulses
Host-to-Device Copy	0.089	0.319	0.314	1.179
FFT	0.029	0.050	0.077	0.194
Multiply	0.011	0.023	0.023	0.056
IFFT	0.028	0.049	0.077	0.176
Device-to-Host Copy	0.116	0.399	0.400	1.306
Run Time	0.068	0.123	0.177	0.427
Latency	0.273	0.840	0.891	2.912

Real Time Operation

GTX285, Single DMA Channel

For run time less than one-way transfer, real-time operation requires HTD+DTH time less than pulse interval.

Fermi, Dual DMA Channels

Separate HTD and DTH channels allow tighter timelines. Real-time operation requires HTD + algorithm run time less than pulse interval.

Shared Memory Study

Investigated optimizing multiplication step by using shared memory.

Reduce reads from global to on-chip registers by sharing filter coefficients:

Coalesced Reads

- Global memory accessed via 32-, 64- or 128-byte reads
- Threads accessing aligned memory may use coalesced reads (strict rules based on compute capability)

NVIDIA CUDA C Programming Guide, Version 3.1, 5/28/2010

Shared Memory Results

 Shared memory implementation lowers multiplication block performance.

- Update algorithms for Fermi architecture
- Benchmark adaptive beam forming and other algorithms

Desktop System

Future Tactical Systems

