

Sparse Matrix Algorithms on GPUs and their Integration into SCIRun

Devon Yablonski yablonski.d@husky.neu.edu

&

Miriam Leeser mel@coe.neu.edu Dana Brooks brooks@ece.neu.edu

This work is supported by:

- NSF CenSSIS The Center for Subsurface Sensing and Imaging
- BIAT A Biomedical Imaging Acceleration Testbed: NSF Award Number 0946463
- CIBC, the Center for Integrative Biomedical Computing, which develops and maintains SCIRun

Outline

- 1. Introduction
 - i. Goals
 - ii. SCIRun Biomedical Problem Solving Environment
 - iii. GPU Architecture
- 2. Theory and Calculations
 - i. Linear Solvers
- 3. Design
 - i. GPU implementation
 - ii. User Interface Modifications
- 4. Results
- 5. Discussion and Conclusions

				۷.
Introduction	Theory	Design	Results	Discussion

- Accelerate SCIRun Problem Solving
 - To create an implementation of double precision sparse linear solvers in a problem solving environment for the GPU including:
 - Conjugate Gradient Method (CG)
 - Minimal Residual Method (MinRes)
 - Jacobi Method
 - To provide a mechanism to accelerate many SCIRun algorithms while remaining transparent to the scientist
 - Retaining in-progress algorithm visualizations
 - Allowing for future GPU algorithm development within the environment

Introduction	Theory	Design	Results	Discussion

University of Utah's SCIRun

• SCIRun is a biomedical problem solving environment (BioPSE)

Northeastern

- Center for Integrative Biomedical Computing (CIBC)
- Designed to be **extensible and scalable**.
- Supports interaction among the modeling, computation and visualization phases of biomedical imaging
- Uses include:
 - Cardiac electro-mechanical simulation
 - ECG & EEG forward and inverse calculations
 - Deep brain stimulation modeling
- Available for Windows, Mac/OSX and Linux

Introduction Theory Design Results Discussion

Northeastern

University of Utah's SCIRun

- Allows scientists to create a network of mathematical functions
- The network visualizes a simulation from start to finish
- Many of these algorithms are time consuming
 - ... and display parallelism!

Introduction	Theory	Design	Results	Discussion

Heart Ischemia Model

- Ischemia: Tissue damaged by a lack of blood flow
- The model is a 3D interactive model based on a scan of an ischemic dog heart
 - For measuring and predicting extracellular cardiac potentials
- The network on the previous slide generates this image
- The sparse data in this model is 107,000 x 107,000 with 1.2 million nonzeros
 - Compressed Row Storage
 Format

Introduction	Theory	Design	Results	Discussion
--------------	--------	--------	---------	------------

SolveLinearSystem Module

- Solves sparse linear systems with a variety of algorithms
- Allows the user to modify parameters such as preconditioners, target error, and iteration limit
- Displays current error, iteration count and convergence graph
 - This helps the scientist visualize results

SolveLinearSystem_0	
Methods Preconditioners	
Conjugate Gradient & Precond. (SCI) BiConjugate Gradient & Precond. (SCI) Jacobi & Precond. (SCI) MINRES & Precond. (SCI) Target error: 2.000e-007 JUJ 0.000e+000 3.330e-007 Maximum Iterations:	.660e-007 9.990e-007 S
1543	
	alutiona
Partial Solution Emitted Every: 209	
Use previous solution	n as initial guess
Iteration:	669
Original Error:	1.0
Current Error:	1.8910133664944996e-7
Convergence	
0	Current Target Target Error Current Error 00 800

ntroduction	Theory	Design	Results	
-------------	--------	--------	---------	--

In

8

GPU Architecture – NVIDIA GeForce GTX 280

- Graphics processing units are Single Instruction Multiple Data (SIMD)
- 240 cores (32 multiprocessors with 8 processors in each)
- Multi-tiered memory layout
 - 1GB global memory
 - 16kB per-core shared memory
 - 64kB total read-only constant memory
 - 16384 registers per multiprocessor
- 32 warp threads perform the same instruction on a set of data
- Programmable using NVIDIA CUDA C or OpenCL

	0			
troduction	Theory	Design	Results	Discussion

Algorithm descriptions from Wolfram MathWorld

	-			
Introduction	Theory	Design	Results	Discussion

Conjugate Gradient Method

- The most commonly used iterative solver of linear systems, Ax=b
- Matrix *A* must be square, symmetric and positive definite
- Benefits include:
 - Ease of use
 - Minimal storage requirement
 - Good convergence rate if there is sufficient numerical precision

Other Methods

• Jacobi

- Simplest algorithm for linear solvers
- Matrix *A* must be *diagonal* the absolute value of each diagonal element must be:
 - Non-zero
 - Greater than the absolute value of each element in that row.

Minimal Residual

- More complicated than CG
- Can also solve symmetric indefinite systems
- Stronger convergence behavior with infinite precision
 - Guaranteed to have non-decreasing residual errors each iteration

Algorithm descriptions from Wolfram MathWorl	d
--	---

Original Design - ParallelLinearAlgebra (CPU)

- All algorithms exist at SCIRun's module level - SolveLinearSystem
- All low-level parallel computations exist at SCIRun's algebra level -ParallelLinearAlgebra
 - CPU matrix and vector computations with optimizations
- Algorithms call these low level math functions as an abstraction
 - This structure lends itself to a convenient GPULinearAlgebra sibling

				11
Introduction	Theory	Design	Results	Discussion

Modified Design - GPULinearAlgebra

Introduction	Theory	Design	Results	Discussion

Computation Details

- Operations Accelerated:
 - GPULinearAlgebra now contains accelerated versions of all functions in the ParallelLinearAlgebra CPU library provided with SCIRun
 - Sparse Matrix-Vector multiplication (SpMV)
 - Vector addition, simultaneously adding and scaling, subtraction, copy, dot product, normalization, maximum, and minimum, threshold invert and more...
 - Operations implemented using NVIDIA CUBLAS libraries and direct coding in CUDA
 - CUBLAS does not handle sparse data

				13
Introduction	Theory	Design	Results	Discussion

Computation Details

- Numerical Precision
 - Double precision floating point is necessary for accurate convergence of these algorithms
 - The GPU version is performed in double precision in order to achieve convergence in all examples, as in SCIRun's double precision CPU implementation
- Data Storage
 - The problems are large in size, with sparsely populated matrices
 - Sparse data formats are required, adding complexity and decreasing parallelism

				14
Introduction	Theory	Design	Results	Discussion

Compressed Sparse Row Storage

- Rows may have few nonzero entries
 - Lots of wasted memory and calculations if stored in a dense format
- Instead, store only relevant points A[i] and two location vectors
 - Location vectors
 - Column index C[i] gives column number of element A[i]
 - Row pointer R[i]=j gives location A[j] of a row change

L.Buatois, G.Caumon & B.Lévy, Concurrent Number Cruncher: An Efficient Sparse Linear Solver on the GPU, High Performance Computing and Communications, Third International Conference, HPCC, 2007.

Introduction	Theory	Design	Results	Discussion
--------------	--------	--------	---------	------------

Experiment Details

- Test Machine
 - CPU Intel Core 2 E6300 1.86GHz, 2Mb L2 cache, 1066MHz FSB
 - GPU NVIDIA GeForce 280 GTX 1GB RAM PCIe card
- Test conditions
 - Tests were run >10 times each to assure accurate results
 - Test time is end to end includes all data transfer and setup overheads involved in GPU version
- Test data
 - Heart Ischemia Model
 - University of Florida's Sparse Matrix Collection

				16
Introduction	Theory	Design	Results	Discussion

Input Data

Conjugate Gradient

GPU/CPU End to End Speedup – Nearly identical performance in each of 10 runs

CPU: Intel Core 2 1.86GHz GPU: NVIDIA GeForce GTX 280

Double Precision is used in all examples

Introduction	Theory	Design	Results	Discussion

Jacobi and Minimal Residual

CPU: Intel Core 2 1.86GHz GPU: NVIDIA GeForce GTX 280 Double Precision is used in all examples

107K x 107K Heart Ischemia Model					
A 1	Time (s	econds)	Grander		
Algorithm	CPU	GPU	Speedup		
CG	164.57	31.05	5.3x		
Jacobi	7.42	1.46	3.4 x		
MinRes	81.96	11.80	6.9x		

Introduction	Theory	Design	Results	Discussion

Third Party Implementations

- Many third party packages are available as open source
- They may perform better but are more difficult or impossible to incorporate into the user experience of SCIRun
- CNC Number Cruncher (CG implementation)
 - Gocad Research Group Nancy University, France

107K x 107K Heart Ischemia Model				
Time (seconds)			Speedup	
Algorithm	CPU	GPU	Speedup	
CG	164.57	31.05	5.3x	
3 rd Party CG	164.57	27.98	5.9 x	

L.Buatois, G.Caumon & B.Lévy, Concurrent Number Cruncher: An Efficient Sparse Linear Solver on the GPU, High Performance Computing and Communications, Third International Conference, HPCC, 2007.

Introduction	Theory	Design	Results	Discussion

Validation of Results

- Different orders of operations still affect the iterations necessary to achieve desired error
 - Double precision is necessary to limit this
 - The CPU and GPU differ in the number of iterations needed to converge by less than 1%

				21
Introduction	Theory	Design	Results	Discussion

Discussion

- Speedup was achieved using the original CPU algorithm
 - The only added operations are transferring the data to the GPU
 - The algorithms were accelerated by a simple technique that can be applied to algorithms throughout SCIRun

Where the Performance is Realized

- In SpMV, each row is computed by one thread
 - Small number of rows = low utilization of GPU
- The other vector operations (mostly accelerated via the CUBLAS library) are relatively fast but occupy a low % of total time

SolveLinearSystem Module Modifications

Design

SolveLinearSystem_0	
Methods Preconditioners \	
 Conjugate Gradient & Precond. (SCI) BiConjugate Gradient & Precond. (SCI) Jacobi & Precond. (SCI) MINRES & Precond. (SCI) Target error: 2.000e-007 3.330e-007 6.660e-007 Maximum Iterations: 1543 	7 9.990e-007 E
Emit partial solutions	
Partial Solution Emitted Every: 209	
Use previous solution as initial	l guess
Iteration:	669
Original Error:	1.0
current Litol.	1.05101330043443306-7
Convergence	
0 -	Current Target
	Target Error
Si 2	Current Error
ž 4-	
·	
0 200 400 600 Iteration	800
Introduction Th	heory

E SolveLinear	System_0			x
Methods \	Preconditioners \			
 Conjugate (BiConjugate (Jacobi & Pr MINRES & 	Gradient & Precond. (9 Gradient & Precond recond. (SCI) Precond. (SCI)	(SCI) . (SCI)		
		Use GPU		
Target error: 2.00	10e-07			+ -6
0.000e+00	3.330e-07	6.660e-07	9.990e-07	- S
Maximum Iter 1543	ations:			
Partial Solutio	Emit	partial solutions		
209	in Emitted Every.			
	🗆 Use previous	solution as initial (quess 🥢	
Iterations per 0	Graph Update:(0 = D	rawn at completio	n - fastest) [
Iteration: Original Error:				668 1.0
Current Error:			1.94398859090886	33e-7
Previous Exec	ution Time (s):	3		8
	Converger	ice		
rror (RMS) 5 + 6 - 6 - 0			 Current T Target Er Current E 	arget ror irror
	200 400 1teration	600 8	П 00	2.1
	Results		Discussio	on

Limitations

25

- Computation boundaries
 - Double precision availability & performance is limited
 - Even in the new Fermi generation of GPUs, double precision is still limited to 1/8 of single precision speed (1 DP unit per MP)
 - This will get better soon!
 - Sparse data
 - Memory coalescing is essential to good GPU performance

- Varying data characteristics
 - The worst possible data scenario could cause poor GPU performance

Introduction	Theory	Design	Results	Discussion

Successes

- User experience
 - The scientist using SCIRun gets results quicker
 - Transparency Same user interaction during GPU accelerated functions
- SCIRun development SCIRun is an open source PSE
 - GPU can be used following pre-existing programming paradigm
- Extensibility to other PSEs
 - Algorithms can be accelerated and still provide adequate interface communication by performing small individual calculations rather than complex kernels

				20
Introduction	Theory	Design	Results	Discussion

Future Work

- Choose between CPU and GPU algorithms automatically at runtime
- Experiment with new SpMV techniques and newly released libraries for these functions
- Investigate better asynchronous techniques for inter-algorithm visualizations
- Demonstrate acceleration of algorithms outside of the linear solver module

Introduction	Theory	Design	Results	Discussion

Thank You

This work is supported by:

- NSF CenSSIS The Center for Subsurface Sensing and Imaging
- BIAT A Biomedical Imaging Acceleration Testbed: NSF Award Number 0946463
- CIBC, the Center for Integrative Biomedical Computing, which develops and maintains SCIRun

Devon Yablonski Yablonski.d@husky.neu.edu

				29
Introduction	Theory	Design	Results	Discussion