
Sparse Matrix Algorithms on GPUs and
their Integration into SCIRuntheir Integration into SCIRun

&

Devon Yablonski
yablonski.d@husky.neu.edu

&
Miriam Leeser Dana Brooks

mel@coe.neu.edu brooks@ece.neu.edu

This work is supported by:

• NSF CenSSIS - The Center for Subsurface Sensing and Imaging• NSF CenSSIS - The Center for Subsurface Sensing and Imaging

• BIAT – A Biomedical Imaging Acceleration Testbed: NSF Award Number
0946463

CIBC th C t f I t ti Bi di l C ti hi h d l d

1

• CIBC, the Center for Integrative Biomedical Computing, which develops and
maintains SCIRun

Outline

1. Introduction
i. Goals

ii. SCIRun Biomedical Problem Solving Environment

iii GPU Architectureiii. GPU Architecture

2. Theory and Calculations

i. Linear Solvers

3. Design

i. GPU implementation

ii U I t f M difi tiii. User Interface Modifications

4. Results

5. Discussion and Conclusions

Introduction Theory Design Results Discussion
2

Goals

• Accelerate SCIRun Problem Solving

T t i l t ti f d bl i i• To create an implementation of double precision
sparse linear solvers in a problem solving
environment for the GPU including:

C j t G di t M th d (CG)• Conjugate Gradient Method (CG)
• Minimal Residual Method (MinRes)
• Jacobi Method

• To provide a mechanism to accelerate many
SCIRun algorithms while remaining transparent
to the scientist

• Retaining in-progress algorithm visualizations
• Allowing for future GPU algorithm development

within the environment

3

Introduction Theory Design Results Discussion

University of Utah’s SCIRun

• SCIRun is a biomedical problem
solving environment (BioPSE)

C t f I t ti Bi di l• Center for Integrative Biomedical
Computing (CIBC)

• Designed to be extensible and
scalablescalable.

• Supports interaction among the
modeling, computation and
visualization phases of biomedical p
imaging

• Uses include:
• Cardiac electro-mechanical simulation
• ECG & EEG forward and inverse

calculations
• Deep brain stimulation modeling

• Available for Windows Mac/OSX• Available for Windows, Mac/OSX
and Linux

4

Introduction Theory Design Results Discussion

University of Utah’s SCIRun

All i ti t t t• Allows scientists to create a
network of mathematical
functions

• The network visualizes a
simulation from start to finish

• Many of these algorithms are
time consuming

… and display parallelism!

5

Introduction Theory Design Results Discussion

Heart Ischemia Model

• Ischemia: Tissue damaged by a lack
of blood flow

• The model is a 3D interactive model
based on a scan of an ischemic dog
h theart

• For measuring and predicting
extracellular cardiac potentials

• The network on the previous slide
generates this image

• The sparse data in this model is• The sparse data in this model is
107,000 x 107,000 with 1.2 million
nonzeros

• Compressed Row Storage
Format

6

Introduction Theory Design Results Discussion

SolveLinearSystem Module

• Solves sparse linear systems with• Solves sparse linear systems with
a variety of algorithms

• Allows the user to modifyAllows the user to modify
parameters such as
preconditioners, target error, and
iteration limit

• Displays current error, iteration
count and convergence graph

• This helps the scientist
visualize results

7

Introduction Theory Design Results Discussion

GPU Architecture – NVIDIA GeForce GTX 280

• Graphics processing units are Single
Instruction Multiple Data (SIMD)

• 240 cores (32 multiprocessors with 8
processors in each)

• Multi-tiered memory layoutMulti tiered memory layout
• 1GB global memory
• 16kB per-core shared memory
• 64kB total read only constant• 64kB total read-only constant

memory
• 16384 registers per multiprocessor

• 32 warp threads perform the same
instruction on a set of data

• Programmable using NVIDIA CUDA g g
C or OpenCL

8Images from NVIDIA and Geeks3D.com

Introduction Theory Design Results Discussion

Conjugate Gradient Method

• The most commonly used iterative• The most commonly used iterative
solver of linear systems, Ax=b

• Matrix A must be square,
symmetric and positive definite

• Benefits include:
E f• Ease of use

• Minimal storage requirement
• Good convergence rate if

th i ffi i t i lthere is sufficient numerical
precision

Introduction Theory Design Results Discussion
9Algorithm descriptions from Wolfram MathWorld

Other Methods
• Jacobi

• Simplest algorithm for linear
solvers

• Matrix A must be diagonal – the
absolute value of each diagonal
element must be:
• Non-zero
• Greater than the absolute value

of each element in that row.

Solve for xi
Use previous iteration x as xi-1

• Minimal Residual
• More complicated than CG
• Can also solve symmetric indefinite systems
• Stronger convergence behavior with infinite

precision

10

• Guaranteed to have non-decreasing residual errors
each iteration

Algorithm descriptions from Wolfram MathWorld

Introduction Theory Design Results Discussion

Original Design - ParallelLinearAlgebra (CPU)

• All algorithms exist at SCIRun’s
module level - SolveLinearSystem

• All low-level parallel computations exist

SolveLinearSystem
(Algorithms)

• All low-level parallel computations exist
at SCIRun’s algebra level –
ParallelLinearAlgebra

CPU t i d t

MinResCG Jacobi

• CPU matrix and vector
computations with optimizations

• Algorithms call these low level math
ParallelLinearAlgebra

(Low-Level Math)
functions as an abstraction

• This structure lends itself to a
convenient GPULinearAlgebra sibling

SpMV Add

11

Introduction Theory Design Results Discussion

Modified Design - GPULinearAlgebra

12

Introduction Theory Design Results Discussion

Computation Details

• Operations Accelerated:• Operations Accelerated:

• GPULinearAlgebra now contains accelerated versions of all functions in
the ParallelLinearAlgebra CPU library provided with SCIRun

• Sparse Matrix-Vector multiplication (SpMV)

• Vector addition, simultaneously adding and scaling, subtraction, copy,
dot product, normalization, maximum, and minimum, threshold invert
and more…

• Operations implemented using NVIDIA CUBLAS libraries and directOperations implemented using NVIDIA CUBLAS libraries and direct
coding in CUDA

• CUBLAS does not handle sparse data

13

Introduction Theory Design Results Discussion

Computation Details

• Numerical Precision• Numerical Precision

• Double precision floating point is necessary for accurate convergence of
these algorithms

• The GPU version is performed in double precision in order to achieve
convergence in all examples, as in SCIRun’s double precision CPU
implementation

• Data Storage

• The problems are large in size, with sparsely populated matrices

S d t f t i d ddi l it d d i• Sparse data formats are required, adding complexity and decreasing
parallelism

14

Introduction Theory Design Results Discussion

Compressed Sparse Row Storage

Non-zero Values 1 2 7 3 9 1 8 3 4 1 1 1 2 2
Column Index 0 2 4 1 7 2 3 4 6 0 3 7 6 7
Row Pointer 0 1 3 4 5 8 9 12

1
2 7

3 14Row Pointer 0 1 3 4 5 8 9 123
9

1 8 3
4

1 1 1
14 Non-zeros requires 59 memory fetches in one SpMV

Filling ratio in memory = 100%

4

• Rows may have few nonzero entries

1 1 1
2 2

Filling ratio in memory = 100%

y

• Lots of wasted memory and calculations if stored in a dense format

• Instead, store only relevant points A[i] and two location vectors

• Location vectors

• Column index C[i] gives column number of element A[i]

R i t R[i] j i l ti A[j] f h• Row pointer R[i]=j gives location A[j] of a row change

L.Buatois, G.Caumon & B.Lévy, Concurrent Number Cruncher: An Efficient Sparse Linear Solver on the GPU, High
Performance Computing and Communications, Third International Conference, HPCC, 2007. 15

Introduction Theory Design Results Discussion

Experiment Details

• Test Machine

• CPU – Intel Core 2 E6300 1.86GHz, 2Mb L2 cache, 1066MHz FSB

• GPU - NVIDIA GeForce 280 GTX 1GB RAM PCIe card

• Test conditions

• Tests were run >10 times each to assure accurate results

• Test time is end to end includes all data transfer and setup overheads• Test time is end to end – includes all data transfer and setup overheads
involved in GPU version

• Test data

• Heart Ischemia Model

• University of Florida’s Sparse Matrix Collection

Introduction Theory Design Results Discussion
16

Input Data

2500
3000
3500
4000

an
ds

)

Number of Rows

• The sparse matrices vary in
size from 6.3K to 3.5M
rows 0

500
1000
1500
2000
2500

Ro
w

s
(t

ho
us

a

rows

10000
12000
14000
16000

ou
sa

nd
s)

Nonzeros

• Nonzeros vary from 42K to
14.8M

0
2000
4000
6000
8000

N
on

ze
ro

s
(t

ho

17

Introduction Theory Design Results Discussion

Conjugate Gradient

GPU/CPU End to End Speedup – Nearly identical performance in each of 10 runs

CPU: Intel Core 2 1 86GHzCPU: Intel Core 2 1.86GHz
GPU: NVIDIA GeForce GTX 280

Double Precision is used in all examples 18

Introduction Theory Design Results Discussion

Jacobi and Minimal Residual

CPU: Intel Core 2 1.86GHz
GPU: NVIDIA GeForce GTX 280GPU: NVIDIA GeForce GTX 280

Double Precision is used in all examples

107K x 107K Heart Ischemia Model

Algorithm
Time (seconds)

SpeedupAlgorithm Speedup
CPU GPU

CG 164.57 31.05 5.3x
J bi 7 42 1 46Jacobi 7.42 1.46 3.4x

MinRes 81.96 11.80 6.9x

19

Introduction Theory Design Results Discussion

Third Party Implementations

• Many third party packages are available as open source

Th f b tt b t diffi lt i ibl t• They may perform better but are more difficult or impossible to
incorporate into the user experience of SCIRun

• CNC Number Cruncher (CG implementation)

107K x 107K Heart Ischemia Model

• Gocad Research Group – Nancy University, France

107K x 107K Heart Ischemia Model

Algorithm
Time (seconds)

Speedup
CPU GPUCPU GPU

CG 164.57 31.05 5.3x
3rd Party CG 164.57 27.98 5.9x5.9x

20
L.Buatois, G.Caumon & B.Lévy, Concurrent Number Cruncher: An Efficient Sparse Linear Solver on the GPU, High
Performance Computing and Communications, Third International Conference, HPCC, 2007.

Introduction Theory Design Results Discussion

Validation of Results

1

1.2

ce

Difference in Iterations to Converge

0.4

0.6

0.8

en
ta

ge
 D

iff
er

en
c

0

0.2

507 1016 1580 2174 3640 4126 5759 8485 15681 25195

Pe
rc

e

• Different orders of operations still affect the iterations necessary to

CPU Iterations to Converge

p y
achieve desired error

• Double precision is necessary to limit this

Th CPU d GPU diff i th b f it ti d d t• The CPU and GPU differ in the number of iterations needed to converge
by less than 1%

21

Introduction Theory Design Results Discussion

Discussion
• Speedup was achieved using the original CPU algorithm

• The only added operations are transferring the data to the GPU

• The algorithms were accelerated by a simple technique that can
be applied to algorithms throughout SCIRun

Iterative portion of the Jacobi Method solverp

Introduction Theory Design Results Discussion
22

Where the Performance is Realized

• In SpMV, each row is computed by one thread

• Small number of rows = low utilization of GPU

• The other vector operations (mostly accelerated via the CUBLAS
library) are relatively fast but occupy a low % of total timelibrary) are relatively fast but occupy a low % of total time

Calculation CPU
()

GPU
()

Speedup Time Distribution of Operations
(ms) (ms)

Data Copy and Setup 0.08 190.22 -2377.75x

Preconditioner 145.11 8.26 17.57x

SpMV 130.68 9.37 13.95x

p

SpMV

Subtract
Subtract 21.09 0.72 29.29x

Dot Product (2 per iter) 12.97 0.53 24.47x

Norm 6.77 0.45 15.04x

Scale and Add (2 per iter) 19 62 0 72 27 25

Subtract

Dot Product (2)

Normalize

Scale and Add (2)
Scale and Add (2 per iter) 19.62 0.72 27.25x

Total time per iteration 223.72 13.04 17.15x

23

Introduction Theory Design Results Discussion

SolveLinearSystem Module Modifications

1

2

3

24

Introduction Theory Design Results Discussion

Limitations

• Computation boundaries

D bl i i il bilit & f i li it d• Double precision availability & performance is limited
• Even in the new Fermi generation of GPUs, double precision is still limited

to 1/8 of single precision speed (1 DP unit per MP)
• This will get better soon!This will get better soon!

• Sparse data
• Memory coalescing is essential to good GPU performance

• Varying data characteristics

• The worst possible data scenario could cause poor GPU performance

25

Introduction Theory Design Results Discussion

Successes

• User experience

• The scientist using SCIRun gets results quicker

• Transparency – Same user interaction during GPU accelerated
functionsfunctions

• SCIRun development – SCIRun is an open source PSE

• GPU can be used following pre-existing programming paradigmG U ca be used o o g p e e st g p og a g pa ad g

• Extensibility to other PSEs

• Algorithms can be accelerated and still provide adequate interface
communication by performing small individual calculations rather than
complex kernels

26

Introduction Theory Design Results Discussion

Future Work

Choose bet een CPU and GPU algorithms a tomaticall at r n• Choose between CPU and GPU algorithms automatically at run-
time

• Experiment with new SpMV techniques and newly released p p q y
libraries for these functions

• Investigate better asynchronous techniques for inter-algorithm
i li tivisualizations

• Demonstrate acceleration of algorithms outside of the linear
solver modulesolver module

27

Introduction Theory Design Results Discussion

A video recording of the CPU and GPU versions of the Conjugate Gradient Algorithm

CPU GPUCPU GPU

Introduction Theory Design Results Discussion

Thank You

This work is supported by: pp y

• NSF CenSSIS - The Center for Subsurface Sensing and
Imaging

• BIAT – A Biomedical Imaging Acceleration Testbed: NSF Award
Number 0946463

• CIBC, the Center for Integrative Biomedical Computing, whichCIBC, the Center for Integrative Biomedical Computing, which
develops and maintains SCIRun

Devon Yablonski
Y bl ki d@h k d

29

Yablonski.d@husky.neu.edu

Introduction Theory Design Results Discussion

