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Goals

• Accelerate SCIRun Problem Solving

T t i l t ti f d bl i i• To create an implementation of double precision 
sparse linear solvers in a problem solving 
environment for the GPU including:

C j t G di t M th d (CG)• Conjugate Gradient Method (CG)
• Minimal Residual Method (MinRes)
• Jacobi Method

• To provide a mechanism to accelerate many 
SCIRun algorithms while remaining transparent 
to the scientist

• Retaining in-progress algorithm visualizations
• Allowing for future GPU algorithm development 

within the environment
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University of Utah’s SCIRun

• SCIRun is a biomedical problem 
solving environment (BioPSE)

C t f I t ti Bi di l• Center for Integrative Biomedical 
Computing (CIBC)

• Designed to be extensible and 
scalablescalable.

• Supports interaction among the 
modeling, computation and 
visualization phases of biomedical p
imaging

• Uses include:
• Cardiac electro-mechanical simulation
• ECG & EEG forward and inverse 

calculations
• Deep brain stimulation modeling

• Available for Windows Mac/OSX• Available for Windows, Mac/OSX 
and Linux
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University of Utah’s SCIRun

All i ti t t t• Allows scientists to create a 
network of mathematical 
functions

• The network visualizes a 
simulation from start to finish

• Many of these algorithms are 
time consuming

… and display parallelism! 
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Heart Ischemia Model

• Ischemia: Tissue damaged by a lack 
of blood flow

• The model is a 3D interactive model 
based on a scan of an ischemic dog 
h theart

• For measuring and predicting 
extracellular cardiac potentials

• The network on the previous slide 
generates this image

• The sparse data in this model is• The sparse data in this model is 
107,000 x 107,000 with 1.2 million 
nonzeros

• Compressed Row Storage 
Format
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SolveLinearSystem Module

• Solves sparse linear systems with• Solves sparse linear systems with 
a variety of algorithms

• Allows the user to modifyAllows the user to modify 
parameters such as 
preconditioners, target error, and 
iteration limit 

• Displays current error, iteration 
count and convergence graph

• This helps the scientist 
visualize results
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GPU Architecture – NVIDIA GeForce GTX 280 

• Graphics processing units are Single 
Instruction Multiple Data (SIMD) 

• 240 cores (32 multiprocessors with 8 
processors in each)

• Multi-tiered memory layoutMulti tiered memory layout
• 1GB global memory
• 16kB per-core shared memory
• 64kB total read only constant• 64kB total read-only constant

memory
• 16384 registers per multiprocessor

• 32 warp threads perform the same 
instruction on a set of data

• Programmable using NVIDIA CUDA g g
C or OpenCL

8Images from NVIDIA and Geeks3D.com
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Conjugate Gradient Method

• The most commonly used iterative• The most commonly used iterative 
solver of linear systems, Ax=b

• Matrix A must be square, 
symmetric and positive definite

• Benefits include:
E f• Ease of use

• Minimal storage requirement
• Good convergence rate if 

th i ffi i t i lthere is sufficient numerical 
precision

Introduction Theory Design Results Discussion
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Other Methods
• Jacobi

• Simplest algorithm for linear 
solvers

• Matrix A must be diagonal – the 
absolute value of each diagonal 
element must be:
• Non-zero
• Greater than the absolute value 

of each element in that row.

Solve for xi
Use previous iteration x as xi-1

• Minimal Residual
• More complicated than CG
• Can also solve symmetric indefinite systems
• Stronger convergence behavior  with infinite 

precision
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• Guaranteed to have non-decreasing residual errors 
each iteration

Algorithm descriptions from Wolfram MathWorld
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Original Design - ParallelLinearAlgebra (CPU)

• All algorithms exist at SCIRun’s 
module level - SolveLinearSystem

• All low-level parallel computations exist

SolveLinearSystem
(Algorithms)

• All low-level parallel computations exist 
at SCIRun’s algebra level –
ParallelLinearAlgebra

CPU t i d t

MinResCG Jacobi

• CPU matrix and vector 
computations with optimizations

• Algorithms call these low level math 
ParallelLinearAlgebra

(Low-Level Math)
functions as an abstraction

• This structure lends itself to a 
convenient GPULinearAlgebra sibling

SpMV Add
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Modified Design - GPULinearAlgebra
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Computation Details

• Operations Accelerated:• Operations Accelerated:

• GPULinearAlgebra now contains accelerated versions of all functions in 
the ParallelLinearAlgebra CPU library provided with SCIRun 

• Sparse Matrix-Vector multiplication (SpMV)

• Vector addition, simultaneously adding and scaling, subtraction, copy, 
dot product, normalization, maximum, and minimum, threshold invert 
and more…

• Operations implemented using NVIDIA CUBLAS libraries and directOperations implemented using NVIDIA CUBLAS libraries and direct 
coding in CUDA

• CUBLAS does not handle sparse data

13

Introduction Theory Design Results Discussion



Computation Details

• Numerical Precision• Numerical Precision

• Double precision floating point is necessary for accurate convergence of 
these algorithms

• The GPU version is performed in double precision in order to achieve 
convergence in all examples, as in SCIRun’s double precision CPU 
implementation

• Data Storage

• The problems are large in size, with sparsely populated matrices

S d t f t i d ddi l it d d i• Sparse data formats are required, adding complexity and decreasing 
parallelism 
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Compressed Sparse Row Storage 

Non-zero Values 1 2 7 3 9 1 8 3 4 1 1 1 2 2
Column Index 0 2 4 1 7 2 3 4 6 0 3 7 6 7
Row Pointer 0 1 3 4 5 8 9 12

1
2 7

3 14Row Pointer 0 1 3 4 5 8 9 123
9

1 8 3
4

1 1 1
14 Non-zeros requires 59 memory fetches in one SpMV

Filling ratio in memory = 100%
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• Rows may have few nonzero entries

1 1 1
2 2

Filling ratio in memory = 100%

y

• Lots of wasted memory and calculations if stored in a dense format

• Instead, store only relevant points A[i] and two location vectors

• Location vectors

• Column index C[i] gives column number of element A[i]

R i t R[i] j i l ti A[j] f h• Row pointer R[i]=j gives location A[j] of a row change

L.Buatois, G.Caumon & B.Lévy, Concurrent Number Cruncher: An Efficient Sparse Linear Solver on the GPU, High 
Performance Computing and Communications, Third International Conference, HPCC, 2007. 15
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Experiment Details

• Test Machine

• CPU – Intel Core 2 E6300 1.86GHz, 2Mb L2 cache, 1066MHz FSB

• GPU - NVIDIA GeForce 280 GTX 1GB RAM PCIe card

• Test conditions

• Tests were run >10 times each to assure accurate results

• Test time is end to end includes all data transfer and setup overheads• Test time is end to end – includes all data transfer and setup overheads 
involved in GPU version

• Test data

• Heart Ischemia Model

• University of Florida’s Sparse Matrix Collection

Introduction Theory Design Results Discussion
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Conjugate Gradient

GPU/CPU End to End Speedup – Nearly identical performance in each of 10 runs

CPU: Intel Core 2 1 86GHzCPU: Intel Core 2 1.86GHz
GPU: NVIDIA GeForce GTX 280

Double Precision is used in all examples 18
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Jacobi and Minimal Residual

CPU: Intel Core 2 1.86GHz
GPU: NVIDIA GeForce GTX 280GPU: NVIDIA GeForce GTX 280

Double Precision is used in all examples

107K x 107K Heart Ischemia Model

Algorithm
Time (seconds)

SpeedupAlgorithm Speedup
CPU GPU

CG 164.57 31.05 5.3x
J bi 7 42 1 46Jacobi 7.42 1.46 3.4x

MinRes 81.96 11.80 6.9x
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Third Party Implementations

• Many third party packages are available as open source

Th f b tt b t diffi lt i ibl t• They may perform better but are more difficult or impossible to 
incorporate into the user experience of SCIRun

• CNC Number Cruncher (CG implementation) 

107K x 107K Heart Ischemia Model

• Gocad Research Group – Nancy University, France

107K x 107K Heart Ischemia Model

Algorithm
Time (seconds)

Speedup
CPU GPUCPU GPU

CG 164.57 31.05 5.3x
3rd Party CG 164.57 27.98 5.9x5.9x

20
L.Buatois, G.Caumon & B.Lévy, Concurrent Number Cruncher: An Efficient Sparse Linear Solver on the GPU, High 
Performance Computing and Communications, Third International Conference, HPCC, 2007.
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Validation of Results
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• Different orders of operations still affect the iterations necessary to 

CPU Iterations to Converge

p y
achieve desired error 

• Double precision is necessary to limit this

Th CPU d GPU diff i th b f it ti d d t• The CPU and GPU differ in the number of iterations needed to converge 
by less than 1%
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Discussion
• Speedup was achieved using the original CPU algorithm

• The only added operations are transferring the data to the GPU

• The algorithms were accelerated by a simple technique that can 
be applied to algorithms throughout SCIRun

Iterative portion of the Jacobi Method solverp

Introduction Theory Design Results Discussion
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Where the Performance is Realized

• In SpMV, each row is computed by one thread

• Small number of rows = low utilization of GPU

• The other vector operations (mostly accelerated via the CUBLAS 
library) are relatively fast but occupy a low % of total timelibrary) are relatively fast but occupy a low % of total time

Calculation CPU 
( )

GPU 
( )

Speedup Time Distribution of Operations
(ms) (ms)

Data Copy and Setup 0.08 190.22 -2377.75x

Preconditioner 145.11 8.26 17.57x

SpMV 130.68 9.37 13.95x

p

SpMV

Subtract
Subtract 21.09 0.72 29.29x

Dot Product (2 per iter) 12.97 0.53 24.47x

Norm 6.77 0.45 15.04x

Scale and Add (2 per iter) 19 62 0 72 27 25

Subtract

Dot Product (2)

Normalize

Scale and Add (2)
Scale and Add (2 per iter) 19.62 0.72 27.25x

Total time per iteration 223.72 13.04 17.15x
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SolveLinearSystem Module Modifications

1

2

3
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Limitations

• Computation boundaries

D bl i i il bilit & f i li it d• Double precision availability & performance is limited
• Even in the new Fermi generation of GPUs, double precision is still limited 

to 1/8 of single precision speed (1 DP unit per MP)
• This will get better soon!This will get better soon!

• Sparse data
• Memory coalescing is essential to good GPU performance

• Varying data characteristics

• The worst possible data scenario could cause poor GPU performance

25
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Successes

• User experience

• The scientist using SCIRun gets results quicker

• Transparency – Same user interaction during GPU accelerated 
functionsfunctions

• SCIRun development – SCIRun is an open source PSE

• GPU can be used following pre-existing programming paradigmG U ca be used o o g p e e st g p og a g pa ad g

• Extensibility to other PSEs

• Algorithms can be accelerated and still provide adequate interface 
communication by performing small individual calculations rather than 
complex kernels

26
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Future Work

Choose bet een CPU and GPU algorithms a tomaticall at r n• Choose between CPU and GPU algorithms automatically at run-
time

• Experiment with new SpMV techniques and newly released p p q y
libraries for these functions

• Investigate better asynchronous techniques for inter-algorithm 
i li tivisualizations

• Demonstrate acceleration of algorithms outside of the linear 
solver modulesolver module

27

Introduction Theory Design Results Discussion



A video recording of the CPU and GPU versions of the Conjugate Gradient Algorithm

CPU GPUCPU GPU
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