
Sparse Matrix Algorithms on GPUs and their Integration into SCIRun

Devon Yablonski, Miriam Leeser and Dana Brooks

{yablonski.d, mel, brooks}@ece.neu.edu

Department of Electrical and Computer Engineering

Northeastern University, Boston, MA

Introduction

The goal of this research is to integrate graphics processing

units (GPUs) into SCIRun[1], a biomedical problem

solving environment, in a way that is transparent to the

scientist. We have developed a portable mechanism that

allows seamless co-existence of CPU and accelerated GPU

computations to provide the best performance while also

providing ease of use. Features include integration into the

existing graphical user interface (GUI) as well as easy

extensibility of GPU processing to future algorithm

development. As a case study, the linear solving

algorithms of SCIRun for sparse data were chosen for their

suitability for acceleration on the parallel processing

architecture that NVIDIA’s GPUs exhibit. The algorithms

allow the creation and demonstration of a mechanism that

can be extended to other existing and future algorithms in

SCIRun. We focus on the conjugate gradient (CG) and

then use the mechanism to extend acceleration to the

Jacobi Method and MinRes solvers. Acceleration of over

6x was achieved using NVIDIA’s CUDA with sparse

matrices, demonstrating the performance of our approach.

SCIRun & CUDA

SCIRun, developed at the University of Utah, is a problem

solving environment aimed at the biomedical research

community. It allows the user to easily implement a

sequential network of mathematical functions to process

data and simulate results. The user creates this network by

selecting computation modules in the GUI and connecting

them according to the desired data flow. Each module has

mathematical algorithms or data I/O functionality, written

in C++, allowing the user to create the simulation without

advanced programming and mathematical knowledge. We

have created a method for integrating GPU acceleration

into user applications without breaking this user friendly

paradigm.

GPUs are of great interest in the high performance

computing community due to the high level of parallelism

in their single instruction multiple data (SIMD)

architecture. Specifically, NVIDIA is a leader in the

making GPUs accessible to programmers for use in

scientific research. NVIDIA’s CUDA is an extension of

the C language that allows the many processing cores of

the GPU to be accessible to the programmer. There are an

increasing number of tools and open source GPU projects

available in the academic and scientific research

communities, making programming with this hardware

efficient in both effort and performance. We use

NVIDIA’s CUDA C to accelerate the algorithms in

SCIRun.

Design & Performance

We have designed a reproducible and adaptable code

structure to allow GPU acceleration in SCIRun that is

maintainable and replaceable on a modular basis. We used

the SCIRun “SolveLinearSystem” module as a case study

for formulating a design that integrates well into the

SCIRun environment. The CG, MinRes and Jacobi

algorithms in this module benefit from the massively

parallel GPU hardware compared to the more sequential

nature of CPUs for which SCIRun was originally designed.

Most data in these simulations are in the form of sparse

matrices that are very large in size (107k x107k for the

example in table 1). SCIRun implements a form of

compressed row storage [2] (CRS) that allows more

efficient memory usage as only non-zero entries are stored.

As a trade-off for the memory savings, the computation

using the sparse format has more overhead as column and

row information for each data point is stored in multiple

arrays that must be referenced to compute any matrix

computation, such as scaling or sparse matrix vector

multiplication (SPMV). CRS is a necessary strategy due to

the relatively low amounts of memory available on most

GPUs but makes it more difficult to achieve speedup.

SCIRun abstracts complex calculations in its code by using

a “ParallelLinearAlgebra” class that contains low level

math functions like matrix-vector multiplication, vector-

vector addition and others. This design allows algorithms

(like CG) to be written at a higher, more readable level in

the module code. We have extended this abstraction by

creating a duplicate class, “GPULinearAlgebra” that

contains identical lower level functions to perform the

calculations on the GPU. We have created sparse matrix

vector multiplication, scaling, addition, subtraction and

other custom CUDA kernels in this class. This provides a

mechanism for any programmer to write their higher level

mathematical algorithm and run it on the GPU with little

or no GPU programming experience or knowledge. Instead

of creating CPU matrices and vectors, GPU matrices and

Figure 1: Layout of SolveLinearSystem with our GPU

implementation

Note: SPMV = Sparse Matrix Vector Multiplication

 * Jacobi Method does not converge using this data, which accounts for a
shorter runtime

vectors are created (in a nearly identical way) and the

functions are named and used the same way as the CPU

functions.

Using this structure, the algorithms in the

SolveLinearSystem module have been implemented using

the GPU. The CPU version of the conjugate gradient

algorithm was duplicated and a simple replacement of all

CPU algebra object types with the GPU counterpart

created a GPU version. The algorithm ran on an NVIDIA

280GTX GPU providing speedup of over 5x in double

precision (Table 1) over the single threaded CPU version

running on an Intel Core 2 CPU at 1.86GHz. This speedup

is an end-to-end speedup including all data transfer to and

from the GPU. The correctness of the results has been

verified by comparing the outputs of the GPU and original

CPU versions of the code.

The SolveLinearSystem module contains other linear

solving algorithms including MinRes and Jacobi [3]. We

illustrated the usability of the GPU implementation by

accelerating these algorithms as well, using the same

approach we used for CG. Similar performance was

achieved, indicative of the extensibility of our approach.

The performance is on par with other GPU studies due to

the fact that we are computing with sparse matrices and in

double precision. Double precision computation is only

recently available; the NVIDIA 2xx GTX series was the

first to provide this capability. Double precision is

necessary to achieve comparable results to the CPU in

many scientific problems, including CG. Furthermore, the

linear solvers are iterative computations with inter and

intra iteration dependencies, so only the individual matrix

and vector computations can be parallelized. Finally, the

speedup was achieved with no modifications to the

algorithm design from the original SCIRun code, nor was

the CUDA implementation optimized for any specific

problem size or specific dataset. Optimizations of the

CUDA code for the solver implementations are part of our

future work.

As previously mentioned, there are many open source

GPU projects that could provide instant acceleration for

applications, including many algorithms in SCIRun. Our

design allows us to easily employ third-party GPU

accelerated algorithms in our GPULinearAlgebra class for

specific GPU tasks in order to achieve better performance.

To demonstrate this, we integrated a sparse matrix

conjugate gradient implementation created by the Gocad

Research Group at Nancy Université in France [4]. Using

this CG solver, slightly improved performance of 5.9x was

obtained compared to our GPU module which is based on

translations of individual operations such as matrix vector

multiply. This is expected since this third-party version has

optimized both the algorithm and the kernel for CG and

the input data size. The tradeoff is that more programming

knowledge is required to include third party source code in

the GPULinearAlgebra class and to convert SCIRun’s data

to the format expected. The resulting algorithm code is

less readable since it is abstracted below the normal

algorithm layer of SCIRun. Our design provides close to

the same performance while maintaining ease of use.

When desirable, advanced techniques including third party

code or a kernel implementing an entire algorithm can be

integrated using our high level interface.

107K x 107K Heart Ischemia Data Example

Algorithm

Time (seconds)

Speedup
CPU GPU

CG 164.57 31.05 5.3x

3
rd

 Party CG 164.57 27.98 5.9x

Jacobi* 7.42 1.46 3.4x

MinRes 81.96 11.80 6.9x

Conclusions & Future Work

Our GPU linear algebra design achieves our original goal

by demonstrating a structure for conveniently applying

GPU hardware to problems in SCIRun and remaining

transparent to the scientist using the application. We

achieved acceleration of nearly 6x of CG in both the third-

party software and our own, easy to use interface. The

Jacobi and MinRes algorithms were also accelerated. This

approach to GPU programming is extendable to other

modules in SCIRun, and is easily adaptable to GPU

hardware changes in the future.

Future work will focus on automated architecture choice

between CPU and GPU algorithms at run-time to use the

most efficient hardware. Also, GPU implementations will

be further optimized for maximum performance.

Acknowledgements

This work is supported in part by the National Science

Foundation Engineering Research Centers Innovations

Program (Award Number EEC-0946463) and CIBC, the

Center for Integrative Biomedical Computing, an NIH /

NCRR funded P41 center, grant P41-RR12553-10, which

develops and maintains SCIRun and supports the third

author. Thanks to Jeroen Stinstra and Darrell Swenson

from the University of Utah for their guidance and for

providing data (matrices) to test.

References

[1] S.G. Parker, D.M. Weinstein, & C.R. Johnson. The SCIRun

computational steering software system. Modern Software

Tools in Scientific Computing, E. Arge, A.M. Bruaset, &

H.P.Langtangen, eds. Birkhauser Press, 1997

[2] F.S. Smailbegovic, G. N. Gaydadjiev, S. Vassiliadis. Sparse

Matrix Storage Format. Proceedings of the 16th Annual

Workshop on Circuits, Systems and Signal Processing.

ProRisc 2005, pp. 445-448, Veldhoven, the Netherlands,

November 2005

[3] Shewchuk, J.R. An introduction to the conjugate gradient

method without the agonizing pain. Technical report, CMU

School of Computer Science, 1994

[4] L.Buatois, G.Caumon & B.Lévy. Concurrent Number

Cruncher An Efficient Sparse Linear Solver on the GPU.

High Performance Computing and Communications, Third

International Conference, HPCC 2007

Table 1: GPU vs CPU Speedup

