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Introduction 

The goal of this research is to integrate graphics processing 

units (GPUs) into SCIRun[1], a biomedical problem 

solving environment, in a way that is transparent to the 

scientist. We have developed a portable mechanism that 

allows seamless co-existence of CPU and accelerated GPU 

computations to provide the best performance while also 

providing ease of use.  Features include integration into the 

existing graphical user interface (GUI) as well as easy 

extensibility of GPU processing to future algorithm 

development. As a case study, the linear solving 

algorithms of SCIRun for sparse data were chosen for their 

suitability for acceleration on the parallel processing 

architecture that NVIDIA’s GPUs exhibit. The algorithms 

allow the creation and demonstration of a mechanism that 

can be extended to other existing and future algorithms in 

SCIRun. We focus on the conjugate gradient (CG) and 

then use the mechanism to extend acceleration to the 

Jacobi Method and MinRes solvers. Acceleration of over 

6x was achieved using NVIDIA’s CUDA with sparse 

matrices, demonstrating the performance of our approach. 

SCIRun & CUDA 

SCIRun, developed at the University of Utah, is a problem 

solving environment aimed at the biomedical research 

community. It allows the user to easily implement a 

sequential network of mathematical functions to process 

data and simulate results. The user creates this network by 

selecting computation modules in the GUI and connecting 

them according to the desired data flow. Each module has 

mathematical algorithms or data I/O functionality, written 

in C++, allowing the user to create the simulation without 

advanced programming and mathematical knowledge. We 

have created a method for integrating GPU acceleration 

into user applications without breaking this user friendly 

paradigm. 

GPUs are of great interest in the high performance 

computing community due to the high level of parallelism 

in their single instruction multiple data (SIMD) 

architecture.  Specifically, NVIDIA is a leader in the 

making GPUs accessible to programmers for use in 

scientific research. NVIDIA’s CUDA is an extension of 

the C language that allows the many processing cores of 

the GPU to be accessible to the programmer.  There are an 

increasing number of tools and open source GPU projects 

available in the academic and scientific research 

communities, making programming with this hardware 

efficient in both effort and performance. We use 

NVIDIA’s CUDA C to accelerate the algorithms in 

SCIRun. 

 

Design & Performance 

We have designed a reproducible and adaptable code 

structure to allow GPU acceleration in SCIRun that is 

maintainable and replaceable on a modular basis. We used 

the SCIRun “SolveLinearSystem” module as a case study 

for formulating a design that integrates well into the 

SCIRun environment.  The CG, MinRes and Jacobi 

algorithms in this module benefit from the massively 

parallel GPU hardware compared to the more sequential 

nature of CPUs for which SCIRun was originally designed. 

Most data in these simulations are in the form of sparse 

matrices that are very large in size (107k x107k for the 

example in table 1). SCIRun implements a form of 

compressed row storage [2] (CRS) that allows more 

efficient memory usage as only non-zero entries are stored. 

As a trade-off for the memory savings, the computation 

using the sparse format has more overhead as column and 

row information for each data point is stored in multiple 

arrays that must be referenced to compute any matrix 

computation, such as scaling or sparse matrix vector 

multiplication (SPMV). CRS is a necessary strategy due to 

the relatively low amounts of memory available on most 

GPUs but makes it more difficult to achieve speedup.  

SCIRun abstracts complex calculations in its code by using 

a “ParallelLinearAlgebra” class that contains low level 

math functions like matrix-vector multiplication, vector-

vector addition and others. This design allows algorithms 

(like CG) to be written at a higher, more readable level in 

the module code. We have extended this abstraction by 

creating a duplicate class, “GPULinearAlgebra” that 

contains identical lower level functions to perform the 

calculations on the GPU. We have created sparse matrix 

vector multiplication, scaling, addition, subtraction and 

other custom CUDA kernels in this class. This provides a 

mechanism for any programmer to write their higher level 

mathematical algorithm and run it on the GPU with little 

or no GPU programming experience or knowledge. Instead 

of creating CPU matrices and vectors, GPU matrices and 

Figure 1: Layout of SolveLinearSystem with our GPU 

implementation 

Note: SPMV = Sparse Matrix Vector Multiplication 



 * Jacobi Method does not converge using this data, which accounts for a 
shorter runtime  

vectors are created (in a nearly identical way) and the 

functions are named and used the same way as the CPU 

functions. 

Using this structure, the algorithms in the 

SolveLinearSystem module have been implemented using 

the GPU. The CPU version of the conjugate gradient 

algorithm was duplicated and a simple replacement of all 

CPU algebra object types with the GPU counterpart 

created a GPU version. The algorithm ran on an NVIDIA 

280GTX GPU providing speedup of over 5x in double 

precision (Table 1) over the single threaded CPU version 

running on an Intel Core 2 CPU at 1.86GHz. This speedup 

is an end-to-end speedup including all data transfer to and 

from the GPU. The correctness of the results has been 

verified by comparing the outputs of the GPU and original 

CPU versions of the code. 

The SolveLinearSystem module contains other linear 

solving algorithms including MinRes and Jacobi [3]. We 

illustrated the usability of the GPU implementation by 

accelerating these algorithms as well, using the same 

approach we used for CG. Similar performance was 

achieved, indicative of the extensibility of our approach.  

The performance is on par with other GPU studies due to 

the fact that we are computing with sparse matrices and in 

double precision. Double precision computation is only 

recently available; the NVIDIA 2xx GTX series was the 

first to provide this capability. Double precision is 

necessary to achieve comparable results to the CPU in 

many scientific problems, including CG. Furthermore, the 

linear solvers are iterative computations with inter and 

intra iteration dependencies, so only the individual matrix 

and vector computations can be parallelized. Finally, the 

speedup was achieved with no modifications to the 

algorithm design from the original SCIRun code, nor was 

the CUDA implementation optimized for any specific 

problem size or specific dataset. Optimizations of the 

CUDA code for the solver implementations are part of our 

future work. 

As previously mentioned, there are many open source 

GPU projects that could provide instant acceleration for 

applications, including many algorithms in SCIRun. Our 

design allows us to easily employ third-party GPU 

accelerated algorithms in our GPULinearAlgebra class for 

specific GPU tasks in order to achieve better performance. 

To demonstrate this, we integrated a sparse matrix 

conjugate gradient implementation created by the Gocad 

Research Group at Nancy Université in France [4]. Using 

this CG solver, slightly improved performance of 5.9x was 

obtained compared to our GPU module which is based on 

translations of individual operations such as matrix vector 

multiply. This is expected since this third-party version has 

optimized both the algorithm and the kernel for CG and 

the input data size. The tradeoff is that more programming 

knowledge is required to include third party source code in 

the GPULinearAlgebra class and to convert SCIRun’s data 

to the format expected.  The resulting algorithm code is 

less readable since it is abstracted below the normal 

algorithm layer of SCIRun. Our design provides close to 

the same performance while maintaining ease of use. 

When desirable, advanced techniques including third party 

code or a kernel implementing an entire algorithm can be 

integrated using our high level interface. 

107K x 107K Heart Ischemia Data Example 

Algorithm 

Time (seconds) 

Speedup 
CPU GPU 

CG 164.57 31.05 5.3x 

3
rd

 Party CG 164.57 27.98 5.9x 

Jacobi* 7.42 1.46 3.4x 

MinRes 81.96 11.80 6.9x 

Conclusions & Future Work 

Our GPU linear algebra design achieves our original goal 

by demonstrating a structure for conveniently applying 

GPU hardware to problems in SCIRun and remaining 

transparent to the scientist using the application. We 

achieved acceleration of nearly 6x of CG in both the third-

party software and our own, easy to use interface. The 

Jacobi and MinRes algorithms were also accelerated. This 

approach to GPU programming is extendable to other 

modules in SCIRun, and is easily adaptable to GPU 

hardware changes in the future. 

Future work will focus on automated architecture choice 

between CPU and GPU algorithms at run-time to use the 

most efficient hardware. Also, GPU implementations will 

be further optimized for maximum performance.  
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