
Accelerating MCAE with GPUs

Information Sciences Institute

15 Sept 201015 Sept 2010
Bob Lucas, Gene Wagenbreth, Dan Davis, Roger Grimes
{rflucas,genew,ddavis}@isi.edu and grimes@lstc.com

Outline

MCAE Sparse Solver BottleneckMCAE Sparse Solver Bottleneck
Review of Multifrontal Method
Adding a GPU
Performance ResultsPerformance Results
Future Directions

MCAE

Mechanical Computer Aided EngineeringMechanical Computer Aided Engineering
ISVs ABAQUS, ANSYS, LS-DYNA, & NASTRAN
GOTS Alegra, ALE3D, CTH, & ParaDYNGOTS Alegra, ALE3D, CTH, & ParaDYN

Broad range of capabilities
Static analysisStatic analysis
Vibration analysis
C h l iCrash analysis

Defense Examples

Shaped charge
Courtesy FEA Info & LSTC

CH47 Landing
Courtesy FEA Info & Boeing

http://llwebdev/HPEC/agendas/proc10/Day1/S1_0920_Lucas/shaped charge.wmv
http://llwebdev/HPEC/agendas/proc10/Day1/S1_0920_Lucas/Boeing helicopter.wmv

Computational Bottleneck

Total time 2057 sec.
199 9 %Linear solver 1995 sec. 97%

Factorization 1981 sec. 96%

AWE benchmark
230K 3D Finite Elements230K 3D Finite Elements

Courtesy LSTC

Toy Sparse Matrix

1 74
do 4 k = 1, 9

2 85

do 4 k = 1, 9
do 1 i = k + 1, 9

a(i, k) = a(i,k) / a(k,k)
1 continue

3 96

X X X

do 3 j = k + 1, 9
do 2 i = k + 1, 9

a(i,j) = a(i,j) –
1 X X X
3 XX X
2 XXX *X*
7 X XX

1 a(i,k) *
2 a(k,j)

2 continue
3 i 7 X XX

9 XX X
8 XXX*X*
4 X *X *XX*

3 continue
4 continue

4 X X XX
5 X XXXX
6 X* X**XX

Multifrontal View of the Toy Matrix

8
41 74 4
5
6

1

2

7

8

4

5

2
4

7
4

9
6

3 96
4
5
6

4
8

6
8

3
2

1
2

64

Duff and Reid, ACM TOMS 1983

A Real Problem : “Hood”

Automotive Hood Inner Panel
Springback using LS-DYNA

“Hood” Elimination Tree

Each frontal matrix’s triangle scaled
b ti i d t f t itby operations required to factor it.

Two Sources of Concurrency

Concurrency within frontal matricesConcurrency within frontal matrices
Small P => column wrap
Large P => 2D (ala LINPACK benchmark)Large P 2D (ala LINPACK benchmark)

Concurrency across elimination treeConcurrency across elimination tree
Frontal matrices only dependent on children
“Subtree – subcube” typically used
Limits communication

Shared Memory Concurrency

8

DOALL

4
5
6

Level 1

2 7 9

DOALL

4
5
6

4
8

6
8Level 2

3
2

1
2Level 3

DOALL

2
6

2
4

Level 3

Why Explore GPUs?

Ubiquitous, cheap, high performance!

Courtesy NVIDIA

GPU Architecture

Multiple SIMD coresMultiple SIMD cores

Multithreaded
O(1000) per GPUO(1000) per GPU

Banked shared memory
16 Kbytes C1060
48 Kbytes C2050

Simple thread model
Only sync at host

Courtesy NVIDIA

Fortran vs CUDA
ip=0;
for (j = jl; j <= jr; j++) {

if(ltid (j 1) jl){

do j = jl, jr

if(ltid <= (j-1)-jl){
gpulskj(ip+ltid) = s[IDXS(jl+ltid,j)];
}

ip = ip + (j - 1) – jl + 1;
}

do j jl, jr
do i = jr + 1, ld
x = 0.0
do k = jl, j - 1
x = x + s(i, k) * s(k, j)
d d

__syncthreads();

for (i = jr + 1 + tid; i <= ld;
i += GPUL_THREAD_COUNT) {

for (j = jl; j <= jr; j++) {
end do
s(i, j) = s(i, j) - x

end do
end do

gpuls(j-jl,ltid) = s[IDXS(i,j)];
}

ip=0;
for (j = jl; j <= jr; j++) {

x = 0.0f;
for (k jl k < (j 1) k++) {for (k = jl; k <= (j-1); k++) {

x = x + gpuls(k-jl,ltid) * gpulskj(ip);
ip = ip + 1;
}
gpuls(j-jl,ltid) -= x;

}}
for (j = jl; j <= jr; j++) {

s[IDXS(i,j)] = gpuls(j-jl,ltid);
}

}

Initial Experiment

Assemble frontal matrix on
host CPU

Initialize by sending panel
of assembled frontal matrixof assembled frontal matrix

Only large frontal matrices
due to high cost of sendingdue to high cost of sending
data to and from GPU

Eliminate panels

Factor diagonal block

Note: host is faster, but its
better to avoid data transfer

Eliminate panels

Eliminate off diagonal panelEliminate off-diagonal panel

Earlier CUDA code

Fill Upper Triangle

Update Schur Complement

Update panels with DGEMM

DGEMM is extremely fast!DGEMM is extremely fast!

We’ve observed >100 GFlop/s
Tesla C2050 (i4r8)

Update Schur Complement

Wider panels in Schur
complement

DGEMM is even faster

Return Entire Frontal Matrix

Return error if diagonal of
0.0 encountered or pivot
threshold exceeded

Otherwise complete frontalOtherwise complete frontal
matrix is returned

Schur complement added toSchur complement added to
initial values on host CPU

Factoring a Frontal Matrix
Timing on C1060 (i4r4)Timing on C1060 (i4r4)

Method Name GPU msec %GPU timeMethod Name GPU msec %GPU time

Copy data to and
from GPU

201.0 32.9%
from GPU

Factor 32x32
diagonal blocks

42.6 7.0%
g

Eliminate off
diagonal panels

37.0 6.1%

Update with
SGEMM

330.6 54.1%

Total time 611 4 100 0%Total time 611.4 100.0%

Calibrating Expectations
Dense Kernel PerformanceDense Kernel Performance

Intel Nehalem Host
2 sockets * 4 cores * {4,2} ALUs * 2.6 GHz
We get ~80 GFlop/s (r4) and 53 GFlop/s (r8)

NVIDIA Tesla C1060
30 processors * {8 1} ALUs * 1 3 GHz30 processors * {8,1} ALUs * 1.3 GHz
We get 170 GFlop/s (r4)

NVIDIA Tesla C2050 (aka, Fermi)
28 processors * {16,8} ALUs * 1.15 GHzp { , }
We get 97 GFlop/s (r8)

Kernel Performance (i4r8)
C2050 vs 8 Nehalem CoresC2050 vs 8 Nehalem Cores

Upper GPU, lower CPU - red means GPU is faster

Update Order
Degree 1024 2048 3072 4096

512 N/A 23 5 32 3 42 0512 N/A
22.8

23.5
47.0

32.3
49.9

42.0
51.5

1024 22.3
43 2

42.5
48 1

57.0
50 5

66.7
51 843.2 48.1 50.5 51.8

1536 36.2
42.2

55.5
49.0

68.8
49.9

77.3
52.0

2048 47.9
46.8

66.6
49.8

78.2
51.2

86.1
52.2

2560 57.0
48 0

73.9
50 3

83.6
51 5

91.5
52 048.0 50.3 51.5 52.0

3072 65.6
49.0

80.1
50.8

89.0
51.4

97.4
52.6

What goes on GPU?

Handful of large supernodes near the root of the tree

Computational Bottleneck

Total time 2057 sec.
199 9 %Linear solver 1995 sec. 97%

Factorization 1981 sec. 96%
Suitable for GPU? 88%Suitable for GPU? 88%

AWE benchmark
230K 3D Finite Elements230K 3D Finite Elements

Courtesy LSTC

Number of Supernodes &
Factor Operations in TreeFactor Operations in Tree

Multicore Performance (i4r4)
vs the Elimination Treevs. the Elimination Tree

LS-DYNA Implicit
CPU vs CPU & GPU (i8r8)CPU vs. CPU & GPU (i8r8)

Near-term Future
Bigger ProblemsBigger Problems

• Problems that don’t fit in GPU memoryy
• Out-of-core to host memory?

• Performance Optimizatione o a ce Opt at o
• Better NVIDIA libraries
• Re-optimize our CUDA kernelRe optimize our CUDA kernel
• Overlap computation & communication

• Pivoting for numerical stabilityPivoting for numerical stability
• Distributed memory (e.g., MPI)

• One GPU per Supernode• One GPU per Supernode
• Kernel with MPI and GPUs

CUBLAS 3.2 is Faster

CUBLAS 3 2 based on UTK’s MAGMACUBLAS 3.2 based on UTK s MAGMA
We’ve seen:

SGEMM 398 Gflop/sSGEMM 398 Gflop/s
DGEMM 231 Gflop/s

Longer-term Future
Smaller ProblemsSmaller Problems

F t ll f t l t i GPU• Factor smaller frontal matrices on GPU
• Maintain real stack on GPU
• Assemble initial values on GPU

• If the entire matrix fits on the GPU
• Forward and back solves
• Exploit GDRAM memory B/W

Summary

Factoring large frontal matrices on Nvidia C2050Factoring large frontal matrices on Nvidia C2050
Sped up LS-DYNA implicit
Another factor of 2X likelyy
Explicit will be much harder

Similar results for other implicit MCAE codesp
BCSLIB-GPU too

ISVs slowly to come to markety
Modest speedup
Support and pricing issues

Research Partially Funded by
JFCOM and AFRL

This material is based on research sponsored by the U.S. Joint

JFCOM and AFRL

This material is based on research sponsored by the U.S. Joint
Forces Command via a contract with the Lockheed Martin
Corporation and SimIS, Inc., and on research sponsored by the Air
Force Research Laboratory under agreement numbers F30602-02-
C 0213 and FA8750 05 2 0204 The U S Go ernment is a thori edC-0213 and FA8750-05-2-0204. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the U.S.
Government. Approved for public release; distribution is unlimited.

	Button14:
	Button15:

