Queueing Theory Modeling of a CPU-GPU System

Lindsay B.H. May, Robert J. Voigt
Northrop Grumman Corporation, Electronic Systems Sector
Lindsay.May@ngc.com, Robert.Voigt @ngc.com
May 11, 2010

There are many tools for modeling compute system
performance where there is either a single processor or a
homogeneous group of parallel processors [1]. There have
been few attempts to model the multi-core heterogeneous
systems that are becoming more prevalent today. Some
models, such as the Kuck diagram, provide a graphical and
conceptual model of the processor/memory architecture but
do not attempt to model the performance of such systems.
For many of these systems, there is a common theme of a
central processing unit (CPU) with some memory that
queues jobs and/or data to be served. For multi-core
systems, there are multiple servers, or processing elements,
along with a supporting memory architecture. Queuing
theory appears to map well onto these architectures
providing for the heterogeneity that is needed and a
hierarchy to support multi-tiered heterogeneous processing.
We apply the graphical depiction of the Kuck diagram
along with a queuing model of the processor/memory
architecture to quantitatively predict the performance of a
variety of architectures using specifications of memory
sizes and bandwidth. The focus of this initial study is on the
relationship between a CPU and a Graphics Processing Unit
(GPU). Our goal, in addition to a providing a predictive
model for these types of architectures, is to validate the
model against actual CPU-GPU based systems.

The Kuck Model

The Kuck model [4], depicted in Figure 1, is a general
parallel machine model that utilizes processing clusters
organized in a hierarchical fashion. Each independent
memory unit is attached to a processor containing registers
and caches; a network connects the components to provide
interprocessor communication and indirect memory access
but does not allow for shared memory addressing. The
shared-memory network attaches the processors directly to
the shared-memory address space. Thus, there are two
types of memory access possible in this model: fast direct
memory access to the shared memory and slower indirect
memory access. Further, clusters of memory units,
processors, and a network are combined via a hierarchy of
networks, shared-memory, and shared-memory networks.
Kuck explains that parallel machines must be exploited
both horizontally, via parallel processing, and vertically, via
memory-hierarchy management.

In addition to the conceptual, easily visualized model, Kuck
develops an abstract performance model for the hierarchical
system model which can be used to qualitatively compare
various architectures. He acknowledges that practical use
would be difficult due to the problem of separating and
measuring the factors that determine system performance.
Motivated by the desire to achieve a quantitative
comparison, we consider the parallel machine model from
the perspective of queueing theory.

’.\ Subscripl indicales
hieraschy level
oloe Legend:
SMNet, SMNety P - processor
* Net

-inter-processornetwork

() (W) M -memory
... ... *SM -shared memory
m m m m * SMNet - shared memory network
[
[

x.5 subscriptfor Net indicates

)
Nats &

Figure 1: Kuck provides a method for describing a hardware
architecture and a memory and communication hierarchy

Queueing Theory and the Queueing Model of
the CPU-GPU System

Queueing theory provides a mathematical description of
customers arriving for service, waiting in lines, and
subsequently receiving service. Further, using queueing
theory, one can calculate performance measures for a
system in steady state such as the expected number of
customers in a queue and in a system, the expected waiting
time in a queue, the expected time spent in a system, and
the probability that a system is in a specified state. There
are two important factors that influence the formation of a
queue: average rate at which demands are made and the
statistical fluctuation about the mean arrival rate. Queues
form even when the average rate is less than the system
capacity as a result of intermittent arrivals [3]. While there
are many queueing models, we will discuss only those
relevant to our CPU-GPU queueing system model.

In terms of a CPU or GPU, we equate memory with queues
and the CPU/GPU cores with servers; see Figure 2. Note
that we consider three subsystems: the CPU, the GPU
global memory, and the Compute Units (each compute unit
is composed of eight GPU cores). In order to develop the
equations for performance measures [2] of a CPU-GPU
system, we consider the equilibrium solution to a
continuous-time Markov chain model. The variables of
interest in this system include &, the arrival rate to the
system; @, the service rate at the server; ¢, the number of
servers; and the ratio p = AM(cp), which is also the server
utilization. The M/M/1 system, which we use to model the
CPU core, exhibits Markovian (exponential) interarrival
and service time distributions, has one server, and allows
for an unlimited queue length. Then the probability, p; , of
finding k customers in the system is given by pe=(1-p)p.
The expected number of customers in the system (in steady
state) is given by L=p/(I-p) and the number of customers in
the queue is calculated using Lq=p2/(1—p). W denotes the
expected amount of time a customer spends in the system,
including service, and is given by W=1/(A-u). The expected

waiting time (time in queue only) is calculated using the
formula W,=pW.

GPU |..|
Block 1
Ay GPU A GPU u
CPU u,—— | | Global Block 2 —
Memory
N GPU My
"1 Block N/8

N = # GPU cores
Figure 2: Open system of queueing models

Also of interest are queueing models in which the queue
capacities are limited and the total number of queueing slots
available is given by K-c, where K is the total system
capacity. In this case, we would study an M/M/c/K
queueing model. In our work, we are interested in two sub
cases of the M/M/c/K model, namely the M/M/1/K model,
with which we describe the single-server GPU global
memory, and the M/M/c/c model, in which the system
capacity equals the number of servers and there is therefore
no queueing. The latter model describes the Compute Units.
The job size for the system equals the size of the shared
memory at a compute unit. In the case of the M/M/1/K
model for O0<n<K and the M/M/c/c model for O<n=c,
respectively, we have

Loes (p=#l) " [
p,=17 and pﬁ#’z'—-
Yo (p=1) p' /it
i=0

For both of these special cases, we calculate the other four
performance measures using the following equations:

popCJrI /e K-c+l
= PP TC 1 (py
ey G

—(1=(pl)NK —c+1)p/c)]
c—1

~ n 2
L
=————L———, and W=—-"L—
A-py) A-py)

In general, when there are a finite number of queue spaces
and they are all filled and an additional customer arrives,
that customer is either turned away and lost forever from
the system or returned to the calling population.

Inputs to the Queueing Model

It would be convenient if we could simply combine these
three subsystems and determine the behavior of the
aggregate system by adding the performance measures of
the subsystems. However, before we can determine the
aggregate behavior, we must describe the connections
between the subsystems. The arrival and service rates
depend directly on CPU and GPU specifications of the
components of the architecture. The arrival rate at the CPU
(ko) is determined by typical problem parameters we would

encounter in a real application. The service rate (u;)
depends on the bandwidth between the CPU and GPU
global memory. The arrival rate at the GPU global memory
(M) involves the service rate at the CPU and a factor
describing parallelizability of the algorithm, since GPUs are
appropriate for highly parallelizable algorithms. We
describe the service rate at the GPU global memory (u,) as
a function of bandwidth between GPU global memory and
the GPU cores, a value determined by the specific choice of
GPU in the architecture. Finally, the arrival rate at a CU
() depends on an appropriate fraction of the service rate at
the GPU and a factor describing data reusability. The
service rate at the CU (p3) depends on the GPU shader
clock speed.

We also need to account for arrivals at the CU when there
are no queueing spaces available and jobs cannot be lost or
sent back to the calling population. Namely, if no CUs are
open to accept jobs, the GPU global memory subsystem
must idle (stall) until there is an available space for a job.
Similarly, if the GPU global memory queue becomes full,
the CPU would have to idle and refrain from processing any
jobs until a space opens in the GPU global memory queue.
To address this concern, we require that the service rates at
the CPU and GPU global memory depend on the number of
jobs in the CU and GPU global memory subsystems,
respectively. Therefore, if the CUs are all occupied
servicing a job, the GPU will have a service rate of zero
until a server is available at the CUs. This feedback allows
us to integrate the three subsystems and subsequently
calculate performance measures for the aggregate system.
Specifically, we combine the input job size with the output
expected time in system (W) to determine the throughput in
bytes per second, which we can equate to FLOPS. Finally,
we compare the FLOPS performance prediction to
measurements taken on real GPU systems.

Summary

This study is a work in progress. Thus far, we have
conducted initial trials on several specific GPU systems and
believe that we have a solid foundation to be able to
quantitatively predict- their performance. We have
implemented the model in MATLAB and run multiple data
sets to build a comparison between the model results and
several hardware platforms in the laboratory. The model
will give us the expected delays of the system and the
average queue lengths. Once we have obtained a
statistically significant data set, we can determine the
mapping between throughput and operations per second.
The preliminary numbers indicate a good correlation
between the model and the measured hardware data.

References

[21 D.E. Culler et al., “LogP:a practical model of parallel
computation,” Communications of the ACM, Vol. 39, No. 11,
Nov. 1996, 78-85.

[2] D. Gross, CM. Harris, Fundamentals of Queueing Theory,
Second Edition, John Wiley & Sons, 1985.

[31 L. Kleinrock, Queueing Systems, Volume I: Theory, John
Wiley & Sons, 1975.

[4]1 D.J. Kuck, High Performance Computing: Challenges for
Future Systems, Oxford University Press, 1996.

