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Introduction

Motion saliency map is a critical feature in rapid analysis of
video data, especially in coping with visual information over-
load and cluttered background [1]. Its potential applications
include automatic action recognition, recognition of moving
objects, and target tracking [2, 3, 4]. Similar to the other fea-
ture saliency maps, a motion saliency map is a topographic
representation of the motion salience at every location in the
visual scene. The generation of a saliency map involves typ-
ically an intermediate representation of a hierarchical struc-
ture with multiple spatial scales, which is computationally
intensive. Array data structures are a natural choice in the
early processing stage at the fine scale levels, and proces-
sors supporting fast array operations in parallel are prefer-
able. The generation of a motion saliency map for video data
analysis is more computationally costly in memory space and
data access or movement, in comparison to intensity, color,
(edge) orientation saliency maps. The latter are generated
from individual image frames while a motion saliency map
generation involves multiple frames. Moreover, there are dif-
ferent approaches emerged in recent years for generating mo-
tion saliency maps, based on physical sensor models, neuron-
physiological vision models [5, 6] or information-theoretic
arguments [7, 5]. We describe three of the motion saliency
map generation methods that are rich in array operations,
which can be carried out rapidly on many-core processors
such as the graphics processing units (GPUs). These methods
differ in their spatial-temporal characteristics or signatures of
the array operations. We show a wide range in the data lo-
cality and concurrency in each array operation and the data
relay between array operations. In the following description
and discussion we assume the simplified case that an image
frame at time ¢ in a video sequence is a square array I (z, y; t)
of N pixels of grayscale values with two dimensional Carte-
sian coordinates (x, y).

Optical-flow based motion saliency

This approach uses directly the conventional optical-flow
model often seen in computer vision applications [8, 9, 10].
The model assumes, among others,

Iz +u,y+v,t+1)—I(z,y,t) =0,
(1)
or, Lu+I,v+1; =0,

where (u, v), to be determined at each and every pixel (z, y),
is the displacement from the frame at ¢ to that at t+1, (I, I)
is the spatial gradient, and [; is determined by the two adja-
cent frames. The first equation is the grey-value constancy,
the second one is its linearization referred to as the optical
flow constraint. The flow field in terms of (u,v) over the

image domain is then described by a variational model, in
which the condition (1) is coupled with some regularization
term(s) on smoothness by an energy function f, for example,

min Flu,v) = ¢(dl (u,0)) + Ao([(V(w,0)[*) (2

where dI(u,v) = I(x + u,y + v,t) — I(x,y), ¢ is the 2-
norm or a non-negative, differentiable, convex function of
the flow field, and V denotes (9,0,,0;). The temporal
gradient component J;(u,v) is absent when (u,v) at t —1
is not available. Once the flow field at time ¢ is obtained,
one may extract a motion saliency map by the magnitude
|u(z,y)| + |v(z,y)|- The solution to (2) between every two
frames is of iterative nature in general and intensive in ar-
ray operations. A solution method via the Euler-Lagrange
equation, for example, needs at least 8 additional arrays for
holding the partial derivatives, I, I, with p € {z,y,t}
and ¢ € {z,y}. At every iteration step, there are element-
wise addition and multiplication operations between array
operands. There may also be certain reduction operations,
such as the summation across an entire array for the 2-norm,
depending on the detailed structure of the energy function.
There are up and down sampling operations when a multi-
grid technique is used. The number of iteration steps to
reach the equilibrium (or the fixed point), however, depends
on many parameters, the condition number of the linearized
equation, the initial guess of (u,v) and the termination crite-
ria.

Motion contrast between orientation feature pyramids

In a relatively new approach, one extracts motion feature and
motion saliency from other feature representations, in par-
ticular, the orientation feature pyramids between two con-
secutive image frames [1]. The orientation feature pyramid
associated with an image frame I contains the feature com-
ponents O(o, §) obtained from I by a bank of Gabor filters,
for instance, at multiple spatial scales ¢ = 0,1,--- ,8 and
multiple local orientations § = 0°,45°,90°,135°. Based on
a spatio-temporal energy model of motion under suprathresh-
old conditions, the motion contrast at level o and in orienta-
tion 6 is extracted as follows,

R(0,0) = |04(0,0)%Ss1(0,0) — Os1(0,0)xS(a,0)|, (3)

where S¢(o, 0) is O(0, 0) shifted by one-pixel along the di-
rection orthogonal to the feature one. The extraction treats
the two adjacent frames symmetrically. The motion con-
trast pyramid is then transformed by the following center-
surround operations, based on a model for visual receptive
fields,

R(c, 5,6) = |R(c,0) & R(s,0)], (4)



where ¢ = 2,3,4 and s = ¢ + 3,4 indicate the center and
surround scales, respectively, and & denotes the cross-scale
difference associated with an interpolation scheme. This
transformed representation is sensitive to local motion con-
trast instead of raw feature magnitude, unlike the optical-
flow based extraction. Finally, each and every component ar-
ray R(c, s, 0) is treated further by a pixel-wise normalization
procedure, and the motion saliency map is obtained by com-
bining/summing up the normalized components across all di-
mensions ¢ = 2, 3,4, s = c+3,4and 8 = 0°,45°,90°, 135°.
The two processing stages have different spatio-temporal sig-
natures. The Gabor filtering process to obtain the orientation
feature pyramid for each frame is a data driven, feed-forward
process. The multiple filtering processes can be carried in-
dependently, the spatial support of each filter affects the data
locality. The stage for extracting the motion contrast from the
pyramids of two adjacent frames involves iterative processes
in normalization of scale-wise contrasts JR(c, s, #). These it-
erative processes are independent of each other and can be
carried out concurrently.

Spatiotemporal filtering

Spatiotemporal filtering methods treat a sequence of image
frames as 3D data, more than two frames are used to ex-
tract motion feature, but they differ in the way the spatial
and temporal dimensions are coupled in the filters. As a
direct extension from the spatial filtering for static images,
one may use 3D Gabor filters [11]. We describe a differ-
ent method. In [12], 2D Gabor filters with two local mo-
tion directions, right and left (45°,135°), are used to the
(x,t) slices/planes, rendering energy maps E, g(z,t) and
E, r(x,t) by the center-surround operations and cross-scale
combinations. The horizontal motion energy map is then de-
scribed as follows,
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where ¢ is a positive constant. Similarly, 2D Gabor filters are
used to the (y, t) slices/planes and render the vertical motion
energy map E, (z,y). Finally, a motion saliency map is ex-
tracted from (E},, E, ), for example, by the magnitude of the
vector field. Although it seems a straightforward extension
of the spatial filtering methods, this method takes many more
image frames and hence incurs a delay in the generation of
the motion saliency map, in addition to the increase in mem-
ory buffers and the scope of memory accesses. The design of
2D or 3D spatial-temporal filers with multiple scales in space
and time is in active research.

Discussion

The processing latency is an important factor in evaluation
and deployment of a saliency analysis model and an algo-
rithmic interpretation of the model. Along with the spa-
tiotemporal features of the three methods described above,
we demonstrate also the resulting saliency maps generated
by these methods for the same video segment as the critical
evidence and reference. There still remains a gap in process-
ing latency between what is achievable on GPUs with the
above methods and what is desirable. There are many ac-
tive efforts in developing saliency models and algorithms, in
two basic approaches or their combinations. One is to extend

existing motion detection models [13, 14, 15] , beside the
optical flow model, for motion saliency analysis. The other
is to exploit the new knowledge of the vision system in the
primate brain [6].
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