
GeAccKL: Toward a GPU numerical kernels library for geosciences
Alan Richardson and Chris Hill

Earth, Atmospheric, and Planetary Sciences, MIT
alan_r@mit.edu, cnh@mit.edu

Introduction
Geoscience codes often contain similar elements as they
usually solve comparable equations, frequently using the
same methods.

Examples of such common building blocks include:

Transport equation
∂φ
∂ t

=u∇ φ+φ∇ .u

Wave equation
∂
2φ

∂ t2
−c2∇ 2φ=F

Diffusion equation
∂φ
∂ t

=∇⋅k∇ φ

Population equation
dP
dt
=uIP

N
N+K s

−gPZ−mP

Solving these systems of time dependent differential
equations, such as by the use of iterative Krylov subspace
and explicit time-stepping methods, is potentially very
amenable to GPU acceleration as it involves parallelizable
operations and a relatively high number of computations per
data element transferred from the CPU to GPU.

This is being exploited to develop a library, GeAccKL
(Geoscience Accelerated Kernels Library), that runs such
kernels on GPU hardware. The library will allow geoscience
developers to benefit from the improved performance
obtainable by using GPUs with minimal effort.

In our presentation we will look at features of the library, an
example kernel, and an example of use in a geoscience
application.

Features of the library

The library will contain kernels that form core building
blocks of geoscience codes. This comprises implicit solvers
such as the Conjugate Gradient method, as well as basic
operators like ∇ φ and ∇⋅φ .

Mixed precision algorithms will be used to maximize GPU
performance. Before the release of the 'Fermi' architecture
this year, NVIDIA's GPUs that were capable of double
precision calculations ('compute capability 1.3' devices) had
eight times more single precision units than double precision,
therefore performing as many of the operations as possible in
single precision was critical for obtaining good performance.

Even on 'Fermi' GPUs there can still be a significant
advantage in maximizing the use of single precision as
geoscience codes are typically memory-bound. Since single
precision data requires 32 bits compared to 64 bits for double

precision, a performance improvement of up to two times is
expected even on the 'Fermi' architecture when double
precision operations are substituted with single precision.
This effect can be seen in Fig. 1.

Due to the recent growth of interest in using GPUs, FPGAs,
CELL processors, and other accelerators, which are typically
optimized for single precision calculations, there have been
several recent demonstrations of mixed precision algorithms,
that is methods that perform many of their operations in
single precision but still obtain a similar answer to methods
that run entirely in double precision. Such algorithms are
therefore likely to be well suited to GPU execution. This
needs to be verified experimentally for each algorithm,
however, as mixed precision methods frequently perform a
larger number of operations than double precision
algorithms.

Another focus during library development is creating
interfaces that are easy to use while also maintaining enough
flexibility that the library can be employed in a diverse
variety of codes. This target will be met with
metaprogramming which allows dynamic code modification
in order to suit the situation. This enables kernels to be
optimized based on the particular circumstances in which
they are being used. For example, if the A matrix in the CG
algorithm is Toeplitz, then it is only necessary to transfer one
element per non-zero diagonal. This reduces CPU-GPU
transfer time and also the consumption of memory bandwidth
on the GPU. It is envisaged metaprogramming will be
implemented by designing the high level structure of the
algorithms and creating a Python script that from this will
generate code tailored to user inputs.

The target application areas include reservoir simulation,

Figure 1: Performance comparison between a mixed and double
precision Conjugate Gradient algorithm on a GTX 295 GPU

ocean and atmosphere models, seismology, and
geomorphology codes.

Example of a kernel: Conjugate Gradient

The Conjugate Gradient (CG) algorithm is a method of
solving a system of linear equations of the form Ax=b in

O N  steps, where A is an N×N positive definite,
symmetric matrix. A mixed precision version of the
algorithm, based on the idea of iterative refinement, was
developed by Göddeke [2] and separately by Buttari,
Dongarra, et al. [1]. In this version of the algorithm an outer
loop runs in double precision. The preconditioning step is
replaced by a call to another CG solver that runs entirely in
single precision and solves the equation Az=r , where r is
the residual from the outer loop.

On one of the hardware configurations tested (an NVIDIA
GTX 295 GPU and a 2 GHz Intel Xeon CPU) a performance
improvement of up to 12 times was seen for the GeAccKL
CG code compared to a CPU version (Fig. 2). As this GPU
has a maximum power consumption of 289W, while the CPU
requires 65W, this corresponds to a 2.6 times improvement in
power efficiency.

Example of an application: MITgcm

The MITgcm (MIT General Circulation Model) is a
numerical ocean, atmosphere, and climate model. It contains

both 2D and 3D CG solvers. We have applied the GeAccKL
CG solver to this code for a configuration where the CPU CG
solver is responsible for 45% of the total runtime.

Accelerating the code using the CG method in the GPU
library required integrating with a large legacy code. This
will be typical of the situations in which the GeAccKL
library is expected to be used.

The impact on the overall performance of the code for
different problem sizes and on different GPUs will be
presented.

Future Developments

The new NVIDIA 'Fermi' architecture, which was recently
released, contains a number of interesting features that will
be relevant to the GeAccKL library. The most notable of
these is the eight-fold increase in the number of double
precision computation units compared to the previous
generation, so that there are now an equal number of single
and double precision units. As many geoscience GPU kernels
are memory-bound, such an increase is unlikely to result in
an eight times speed-up, however. The new GPUs also
receive an increase in memory bandwidth, which, together
with new caches that will reduce memory bandwidth
demand, will certainly lead to improved performance.
Results from Fermi GPUs will be presented.

References
[1] A. Buttari, J. Dongarra, et al. “Mixed precision iterative

refinement techniques for the solution of dense linear systems.”
International Journal of High Performance Computing
Applications, 21(4):457, 2007.

[2] D. Göddeke, R. Strzodka, and S. Turek. “Performance and
accuracy of hardware-oriented native-, emulated-and mixed-
precision solvers in FEM simulations.” International Journal
of Parallel, Emergent and Distributed Systems, 22(4):221–256,
2007.

Figure 2: Speed-up of Conjugate Gradient method on GPU
compared to CPU

Figure 3: The figure shows instantaneous surface pressure
patterns from a 4 month global atmospheric simulation using

the GeAccKL conjugate gradient solver

