
This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed by the United States Government.

Sidecar Network Adapters: Open Architecture for ISR Data Sources
Craig McNally, Chuck Yee, Larry Barbieri

{cmcnally, yee, lbarbieri} @ll.mit.edu

MIT Lincoln Laboratory, Lexington, MA 02420

Introduction
With an ever increasing number of available ISR data

feeds and sensors, consumers of these resources fight an

uphill battle of integration. In order to make use of these

resources they must develop software that understands

numerous data formats, protocols, and interfaces. Such

integration can be unnecessarily complicated and time

consuming. The ISR Sidecar Network Adapter (SNA),

being developed by MIT Lincoln Laboratory, is one

approach to mitigating this problem.

SNAs adapt to the data source and expose their data to

a service bus through a set of common, net-centric

interfaces. This means data consumers need only integrate

with a single set of interfaces and will be compatible with

many feeds and sensors. Since the SNAs are designed to

be part of a Service Oriented Architecture (SOA), they can

utilize the service bus’ core and domain Services to

register their services and feeds. Consumers can then

discover data sources as they become available and can

begin utilizing them immediately. This is a vast

improvement over having to develop software for each

data source.

The high level design in Figure 1 shows the two main

components of the SNA, the Network Adapter (NA) and

the Sensor Adapter (SA). They each adapt to the particular

protocols and formats of the networks/systems they’re

connected to. These protocols and formats are often

different, meaning the SA and NA may need to understand

different sets of technologies. However, there is always

some overlap to allow communication between the two

components.

Figure 1: High level Sidecar Network Adapter design

Network Adapter
The Network Adapter provides a common interface to the

service bus and exposes data via the service bus’ supported

protocols. Open standards such as Simple Object Access

Protocol (SOAP), Web Service Description Language

(WSDL) and eXtensible Markup Language (XML) are

used to accomplish this.

The exposed Network Adapter’s interfaces are made

up of SOAP-based web services. The most commonly

used services are the Adapter Capabilities Service, and the

Data Push Service. Data consumers use these services to

query the SNA for a list of available data feeds and

subscribe to those feeds. For adaptations that require two

way interactions, such as a database or taskable sensor, the

Task Service, Search Service, Data Request Service and

the Status Service are available.

Sensor Adapter
The Sensor Adapter interfaces with the data source via the

source’s native protocols and is usually responsible for

data format translation. The types of translations can vary

greatly, and depend on the data source. In some cases you

might be parsing metadata from images or a video feed. In

other cases you may be translating between binary and

XML messages formats.

Although SNAs can produce feeds of any data format,

XML is the most common. XML has been widely

accepted as the standard for exchanging data among

disparate systems. For example, MITRE’s Cursor on

Target (CoT) is an XML schema that has been widely

adopted within the DoD [1]. Many of the adapters created

to date use CoT as an output format. This allows

applications that already understand CoT to immediately

consume the messages produced by the adapter.

SA / NA Communication
By splitting the SA and NA components, a level of

flexibility is attained that allows each of the components to

reside where it makes the most sense. They could even be

running on different computers, using different operating

systems, in different geographic locations. In one

experiment, an SA connected to a simulated Net-Centric

Collaborative Targeting (NCCT) feed was running in

Texas and communicating to an NA running at MIT

Lincoln Laboratory in Massachusetts.

Although the SA and NA can be connected in many

ways, a publish/subscribe protocol such as Java Messaging

Service (JMS) is typically used for its reliability and its

asynchronous design. In fact, this is how the SA and NA

in the previously mentioned experiment communicated

with each other. However, other means of connecting the

SA and NA can and have been used. For example,

adapters that need to handle streaming data such as video

might use a much faster, but less reliable protocol such as

the User Datagram Protocol/Internet Protocol (UDP/IP).

Adapters that need to handle image files might use a

shared file system or the File Transfer Protocol (FTP)

rather than a messaging protocol.

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed by the United States Government.

Architecture
SNAs are designed to be part of a larger Service Oriented

Architecture (SOA). By being part of a SOA, SNAs can

be used by, and can use core and domain Services that

allow brokering and tasking of resources, data archival,

federated search, and many more capabilities. In the past,

SNAs have used these types of services to secure their web

service interfaces, restricting access to the data being

provided. They have also registered their data feeds in

searchable registries that allowed consumers to discover

and consume them. Since all SNAs implement common

interfaces, consumers can immediately begin using these

discovered services and feeds as they become available.

This is a big advancement from the lengthy integration

process of the past.

Software Development Kit
In order to facilitate the development of SNAs, a Software

Development Kit (SDK) has been created. The SNA SDK

is a Java based development aid comprised of a

Framework and Toolbox. The Framework is a collection

of abstract classes and interfaces that provide the basic

functionality of the SNA. The Toolbox is a collection of

concrete classes that implement and build upon the

Framework’s interfaces and base classes. Through

modularity, the SDK is extensible, and promotes code

reuse, allowing developers to create SNAs while writing

little to no code. Instead, the bulk of SNA development

consists of writing a set of configuration files that define

which components of the Framework and Toolbox to use.

Figure 2 illustrates this development process.

The ability to change an SNA’s internal design

through configuration files becomes extremely helpful

when developing an SNA that will be deployed in a

classified environment. It allows the developer to make

changes and corrections to the translation/transformation

of data without having to leave the classified environment

to make code changes. It also allows the configuration to

be classified, while the code of the SNA can stay

unclassified and easily reusable.

Figure 2 - The SNA Development Process

Examples
The Real-time Enhanced Situation Awareness (RESA)

program at MIT Lincoln Laboratory utilizes several SNAs

and is a good example of how they can be used to cut

down on the amount of integration needed to consume data

feeds. RESA’s goal is to create a “Real-Time” SOA for

rapid operational exposure of ISR data in Tactical Systems

[2]. One of the components in this SOA, called an

aggregator, consumes data from many sources and

presents a control panel to the user allowing them to select

a set of data sources to display. Rather than having the

aggregator understand all of the different data formats and

protocols of the many sources, SNAs were created. This

allows the aggregator to consume all of the feeds while

only having to speak to a single set of interfaces, and

understand a single data format. Other components on the

service bus, such as the SIGINT Alert Service, Air Track

Correlator, and SIGINT Correlator also reap the benefits of

using SNAs. These components consume some of the

same data feeds as the aggregator, and provide additional,

value-added feeds. Without the SNAs, they too would

have needed to integrate with each data source, many of

which use different protocols and data formats.

The SNA SDK was an essential tool for expediting the

implementation of these adapters. Through code reuse, the

SNA developers were able to implement new SNAs while

writing little code. One example of this is the Near Real

Time Intelligence (NRTI) adapter. NRTI is a data feed

that encompasses many different types of information.

The feed’s content ranges from SIGINT to maritime, air,

and ground position data. RESA consumes multiple NRTI

feeds, each containing multiple types of messages with

their own format. To handle this, each adapter has its own

set of configuration files that specifies how to parse and

map a given message type to the CoT format. However,

the code used for each of the NRTI adapter instantiations

is identical. In fact, the code used by the NRTI adapters to

parse and map is generic enough that it is used by RESA in

two non-NRTI adapters as well. One of them interfaces an

Image Product Library (IPL), a DoD image & metadata

repository. The second interfaces a COTS Automatic

Dependent Surveillance-Broadcast (ADS-B) receiver.

Summary
Through the use of SNAs, the amount of integration with

ISR data sources is greatly reduced. Data consumers can

integrate with a common set of services and will be

compatible with any data source interfaced with an SNA.

Since SNAs are part of a SOA, core and domain services

can be utilized for service registration and discovery. This

enables data consumers to find, access and use data

feeds/sources as they become available with minimal

integration. An SDK has been developed that provides the

building blocks necessary to implement new SNAs,

alleviating the need to repeatedly write copious amounts of

software. The SDK is easily extensible, and flexible

enough to create SNAs capable of interfacing many types

of data sources including feeds, sensors, and databases.

References
[1] E. Harding, L. Obrst, A. Rosenthal, “Creating Standards for

Multiway Data Sharing”, The Edge: MITRE’s Advanced

Technology Newsletter. Summer 2004 vol.8 No.1 pp.16-17

 [2] H.E.M Viggh, “Real-time Enhanced Situational Awareness

(RESA)”, ISR Systems and Technology Workshop, 2009,

Lexington, MA, MIT Lincoln Laboratory

